INFORMATION AND COMPUTATION 115, 125-178 (1994)

Fully Abstract Denotational Models for
Nonuniform Concurrent Languages

E. HoriTA

Centre for Mathematics and Computer Sciences,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands; and
NTT Software Laboratories, 3-9-11 Midori-Cho,
Musashino-Shi, Tokyo 180, Japan

J. W. DE BAKKER*

Centre for Mathematics and Computer Science,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands,; and
Departments of Mathematics and Computer Science,
Free University of Amsterdam, The Netherlands

AND

J. J. M. M. RUTTEN*

Centre for Mathematics and Computer Science,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

This paper investigates full abstraction of denotational model w.r.t. operational
ones for two concurrent languages. The languages are nonuniform in the sense that
the meaning of atomic statements generally depends on the current state. The first
language, %, has parallel composition but no communication, whereas the second
one, %, has CSP-like communications in addition. For each of % (i=1,2), an
operational model ¢ is introduced in terms of a Plotkin-style transition system,
while a denotational model & for &, is defined compositionally using interpreted
operations of the language, with meanings of recursive programs as fixed points in
appropriate complete metric spaces. The full abstraction is shown by means of a
context with parallel composition:

Given two statements s, and s, with different denotational meanings, a
suitable statement T is constructed such that the operational meanings of
s, | T and s, || T are distinct.

A combinatorial method for constructing such T is proposed. Thereby the full
abstraction of 2, and &, w.r.t. ¢, and (), respectively, is established. That is, 9, is
most abstract of those models % which are compositional and satisfy ¢,=x-% for
some abstraction function o (i=1,2). (© 1994 Academic Press, Inc.

* Partially supported by ESPRIT Basic Research Action (3020) Integration.

125
0890-5401/94 $6.00

Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

126 HORITA, DE BAKKER, AND RUTTEN
1. INTRODUCTION

This paper investigates full abstraction of denotational models w.r.t.
operational ones for two concurrent languages. The languages are non-
uniform in the sense that the meaning of atomic statements generally
depends on the current state. In particular, they have individual variables
which store values, and the elementary actions are (mainly) value
assignments to these variables. The first language, %, has parallel composi-
tion but not communication, whereas the second one, %, has CSP-like
communications in addition. Both of the two languages have recursion. For
each of & (i=1,2), an operational model ¢, is introduced in terms of a
Plotkin-style transition system, while a denotational model &, is defined
compositionally using interpreted operations of the language and some
fixed point method for defining the meanings of recursive programs.

We show that, with the nonuniform languages, one needs to represent,
in the meaning of a process, possible interactions between the process and
its environment. Merely recording observations of initial and final states or
possible computation sequences is not enough to obtain compositionality.
One needs sequences in which there are gaps between steps to represent
possible actions of the environment. This is essential in order to interpret
parallel composition compositionally. Furthermore, the model one obtains
by adding this information is in fact fully abstract w.r.t. the operational
semantics, which is established by showing how to construct contexts that
distinguish processes with different meanings.

The full abstraction problem for programming languages was first raised
by Milner in [Mil73]. In general, a model & for a language ¥ is called
fully abstract w.r.t. another model @, if it makes just enough distinctions to
be correct (and thus compositional) w.r.t. @. In other words, it is fully
abstract w.r.t. 0, if

Vs1, 5,6 L[2[s,] =D[s,]
< VYC[Cisa context of £ = O[C[s,]] = O[C[s,]111],

where a context is a statement consisting of the language constructs of &
and a place-holder (or a hole) &, and C[s] denotes the result of substituting
s for & in C.' If 9 is fully abstract w.r.t. ¢, then 2 is the most abstract of
those models ¥ which are compositional and satisfy @ =w% for some
abstraction function «; i.e., for each of these 4’s, there is an abstraction
Junction f such that B % =2. The models &, (i =1, 2) will be denotational

' For an operational or denotational model .# for a language % and a statement s € &, the
notation #[s] is used to denote the value of .# at s.

FULLY ABSTRACT MODELS FOR CONCURRENCY 127

in the sense that apart from being compositional, they treat infinite
behavior by means of some fixed point construction.

The mathematical domains we use are complete metric spaces [Niv79,
BZ82]. In general, the metric approach may have, as a tool in program-
ming language semantics, some advantages over the use of the more
traditional complete partial orders: First, many definitions can be given
as the (by Banach’s theorem) unique fixed points of some higher-order
functions. Second, a metric powerdomain can be easily defined (as the
collection of closed or compact subsets of a given complete metric space).
In comparison, ordered powerdomains are easily defined as well (by means
of ideal completion), but often the characterization of their elements is
rather technical. For some example of the application of metric spaces to
semantics, see for instance [ABKRS89, BM88, Bak91].

In Section 2, some mathematical preliminaries on complete metric
spaces, especially on spaces consisting (of sets) of streams, are given; the
main body of our paper consists of Sections 3 and 4.

In Section 3, the first language, %, is introduced; an operational model
O, is presented in terms of a Plotkin-style transition system; and a denota-
tional model 9, for % is defined on the basis of a complete metric space
consisting of sets of streams of pairs of states with some additional infor-
mation. First, the correctness of 9, w.r.t. ¢, is established, as in [Rut89,
BRI1], by means of the fixed point method introduced in [KR90]. The
full abstraction of %, is shown by means of a context with parallel com-
position:

Given two statements s,, s, €%, with different denotational
meanings, a suitable statement 7 called a tester is con-
structed such that the operational meanings of s, | T and
$, | T are distinct.? (1)

A combinatorial method called the testing method, which is the key idea of
our paper, is proposed for constructing such a tester (Lemma 13). This is
in general applicable to denotational models with a domain consisting of
sets of streams of pairs of states (possibly with some additional informa-
tion). Thereby, we can construct testers having the following property:

Given a process p and a finite sequence r=(<{o,,0"), ..,
{6,,0,>), we can construct a tester 7 and an executable
sequence 7= (&}, 6}, ..., (G4, G) with k > n such that for
every process p’, the parallel compositions p'||Z,[T] can
execute 7 if there is some sequence ¢ such that ({o}, 67>, ..,

2 The variable T is used to denote a statement when it is considered a tester, while the typi-
cal variable for the set of statements is s.

128 HORITA, DE BAKKER, AND RUTTEN

{o,,0,7)-qep’, and the converse of this holds for p'=p.
Intuitively, for such T and 7, the process p is forced to
execute the steps <oy, 0}, .., {(d,,0,) (maybe not con-
secutively but in this order), when p||2,[T] executes the
steps ({6, 61, .., (G, G}) consecutively.

By the above property, we can construct such testers 7" as in (1):

If 5, and s, are distinct in their denotational meaning, then,
putting p,=2,[s,] (i=1,2), there exists some sequence r
such that r-g e p, for some g but r-q ¢ p, for every ¢ (or vice
versa). By constructing a tester T and an executable sequence
7 for r and p=p, as above, one has Fe Z,[s,] | 2,[T] and
FE D [s,] 12,[T]. Thus one has a difference between the
operational meanings of the two statements s, || 7 and s, || 7.

The full abstraction of &, is established by means of the testing method as
described above.

In Section 4, the second language, %, is introduced; an operational
model O, for %, is given as in Section 3. The domain of a denotational
model 2, for %, is a kind of failures model, which was introduced in
[BHR84], and is adapted here to the nonuniform setting. Each element of
the domain is a set consisting of elements that are represented as
(Lo a;,07));, La", 'y, where o,, ¢, and ¢” are states, g; is an action,
and I is a set of communication sorts. These elements are called failures; the
parts ({o;,a;,0';>); and (¢”, I') are called a trace and a refusal, respec-
tively. First, the correctness of 2, is established as in Section 3. Then, the
full abstraction of 2, is established by a combination of the testing method
and the method proposed by Bergstra et al. in [BKO88] to establish the
full abstraction of a failures model for a uniform language without recur-
sion. This method was adapted by Rutten in [Rut89] to be employed for
a language with recursion in the framework of complete metric spaces,
which suggests how to use it in the present setting. Given two statements
sy and s, of %, which are distinct in their denotational meanings, then the
denotational meanings are distinct in the trace parts or in the refusal parts.
When the distinction is in the trace parts, we can construct a tester by the
method described above; otherwise we can construct a tester by the
method of [BKO&g8].

Finally, in Section 5, some remarks on related and future work are given.

For some mathematical proofs, the reader will be referred to [HBR90].

Closely related to this paper is the work of Hennessy and Plotkin
[HP79]. The language treated there, which we denote by %, is very
similar to our first language, .%,, except that it contains “co”, a coroutine

FULLY ABSTRACT MODELS FOR CONCURRENCY 129

construct, as well as the usual interleaving. In [HP79], a denotational
model ¥~ for &,, is constructed and the full abstraction of ¥~ is established.
Interestingly, we can construct a fully abstract model Z,, for &, by slightly
modifying Z, ; thus the two models ¥°, Z,, turn out to be isomorphic (see
Section 3.6.3 for more comparison with [HP797]).

The work of Roscoe [Ros84] is also related to this paper. The language
treated there, a large subset of occam, is similar to our second language %,
in many respects. However, unlike individual variables in %, variables in
occam are not shared by two of more parallel processes. Thus, the model
proposed in [Ros84] is different from 2, in its way of involving states into
the meaning of a statement (see Section 4.6 for more comparison with
[Ros847).

2. MATHEMATICAL PRELIMINARIES

As mathematical domains for our operational and denotational models,
we shall use complete metric spaces composed of (sets of) streams. In this
section, we present some standard notions on complete metric spaces and
some notions specific to domains of (sets of) streams.

First, we assume the notions of metric space, ultra-metric space (or
non-Archimedian metric space), complete (ultra-)metric space, continuous
Sfunction, closed set, contraction, nonexpansive mapping, and isometry to be
known. The fact that a contraction from a complete metric space to itself has
a unique fixed point, known as Banach’s Theorem, is conveniently used (for
the notions and fact above, the reader might consult [Dug66] or
[Eng77]). We use the following notation:

Notation 1. (1) The usual A-notation is used for denoting functions;
ie, for a set A, a variable x, and an expression E(x), the expression
(Axe A : E(x)) denotes the function which maps x€ 4 to E(x). For a set X,
the cardinality of X is denoted by #(X), and the set of nonempty subsets
of X and the set of finite subsets of X are denoted by @ ., (X), and g (X),
respectively. For a binary relation R on X, the reflexive and transitive
closure of R is denoted by R*. For two sets X and Y, the set of functions
from X to Y is denoted by (X — Y). The set of natural numbers is denoted
by w. Each number new is identified with the set {iew:0<i<n} as
usual in set theory, and let 7= {ie w: 1 <i<n}. The closure of a subset X
of a topological space M is denoted by X°&.

(2) The empty sequence is denoted by e For a nonempty finite
sequence ¢, the last element of ¢ is denoted by last(q). For a set A, the set
of finite sequences of elements of A is denoted by A4 <%, and let A =
A=<“\{e}. The set of finite or infinite (with length w) of sequences of

130 HORITA, DE BAKKER, AND RUTTEN

elements of A is denoted by 4<“. For ae 4, we sometimes write simply a
to denote the sequence (a) consisting only of a; further, we sometimes write
simply A to denote {(a) :a€Ad}. For g, A=, g, € A<, the concatenation
of g, and ¢, is denoted by ¢, - g,. Also for p, S A<®, p, S A=<, let p, - p, =
{wy-wy:w,ep, Aw,ep,}. For ge A<®, the length of ¢ is denoted by
Igt(g). For new and ge 4<%, the truncation of ¢ at level n, denoted by
g'", is the prefix of g with length = if lgt(n) > n; otherwise it is g. For
psA<®, let pt"l={g" :gep}. An ordered pair {ay, a;) and a triple
{ag, ay,a,y (=<ag,<a,,a,yy) are distinguished from, but treated as
sequences (a;);., With » being 2 and 3, respectively; for n=2, 3, we some-
times write {a;),., to denote {ay, .., a,_;». For n=2, 3 and ien, the ith
component of t=<a,),., is denoted by n’(z).

An arbitrary set A can be supplied with a metric d, called the discrete
metric, defined by d,(x, y)=0 if x=y, otherwise d,(x, y)=1. The space
(A4,d,> is an ultra-metric space. We use the following operation on metric
spaces. (In our definition the distance between two elements of a metric
space is always bounded by 1.)

DerNiTION 1 (Operations on Metric Spaces). Let <M, d>, {M,,d,>, ..,
{M,,d,> be metric spaces. (1) For a real number k such that O <k <1,
we define id, (KM, d>)=<{M,d"), where d'(x, y)=k-d(x,y), for every
x,yeM. (2) Let M, w --- w M, denote the disjoint union of M,, .., M,
which can be defined as ;. [{j} x M;]. A metric dy on M, v ---w M,
is defined as follows: For (i, x>, {j,y>eM,w---w M,, dy({i x>,
{Ly>)=di(x, y)if i=j; otherwise dy(<i, x), {j,¥y>)=1. (3) A metric dp
on the Cartesian product M, x --- x M, is defined as follows: For
(-x17 e X,,), (yla e ,Vn) € Ml X - X Mm dP((xh ees X,,), (yla s yn)) =
max;.,[d;(x;, y;)]. (4) Let p (M) = {Xep(M): Xis closed }. A metric dy
on @y(M), called the Hausdorff distance, is defined as follows: For
X, Yepu(M), du(X,Y)=max{sup, . [d(x, ¥)], sup,.,[d(y, X))},
where d(x, Z) =inf.. ,[d(x, z)] for Z< M, xe X. (We use the convention
that sup J=0 and inf F=1.) The space @, (M)={Xep(M):X is
closed and nonempty} is supplied with a metric by taking the restriction of
dy to it.

Complete metric spaces consisting of streams are introduced as solutions
of appropriate domain equations as in [BZ82, AR89]. Namely, for
arbitrary two sets 4 and B, and for an arbitrary real number x such that
0 <r <1, there exists a complete metric space {Q, d,, », which is unique up
to isometry, satisfying the domain equation: Q= B w (4 xid,(Q)). (The
existence and uniqueness of such Q have been shown in [BZ82] and
[AR89], respectively.) Note that id, is necessary for the associated functor
with this domain equation to be contractive, which condition ensures the

FULLY ABSTRACT MODELS FOR CONCURRENCY 131

uniqueness of the solution (see [AR897]). Henceforth we fix a real number
k such that 0 <x < 1. The metric space {Q, d, > can be defined in terms of
projection functions introduced below, where the projection functions are
very similar to the truncation functions of streams but slightly different
from them, as we will note below.

DerFINITION 2 (Projection Functions). (1) Let Q=(4<“-B)w A®.
We define projection functions ¥, : Q - Q (rne€w) inductively as follows:
First, an arbitrary element b, of B is fixed. Let ¢e Q. (1) Yo(g)=b,.
(i) ¥, 1(g)=q if ge B, and ¥, (q)=a-y,(q") if g=a-q'. (2) Let P=
91(Q). For new and peP, let ,(p)={¥.(¢) : gep}.

Note the difference between truncation and projection: The values of the
projection functions are members of 4 <“- B (=Q), whereas the values of
the truncation functions are members of (4<% -B)u A=< not of Q.

As stated earlier, the metric d,, can also be formulated in terms of projec-
tion functions as follows:

LEMMa 1. (1) For q1s gr € Q, dQ(q“ CIQ) = peMininn(gn) # Yalq2)} - | lf
n[y,.(q,) # ¥.(q2)]; otherwise dQ(Qla 4,)=0.
_(2) For py,pr€P, dplp, py) = k™I =B L p 30 () £
¥.(p2)]1; otherwise dp(p,, p;) =0.
(3) For every neaw,_ there exists €>0 such that Vp,,p,€
Pldp(pi, ps)<e=,(p))=V,(p,)]
Proof. Omitted (see Appendix 1 of [HBRS0]).

The notion of finitely characterized subset is introduced for establishing
that some subsets of a complete metric space are also complete metric
spaces.

DEerFINITION 3 (Finitely Characterized Subsets). A subset P’ of P is
finitely charactefized iff there exists new and P"<P such that
VpeP[peP' < y(p)eP"].

A property @(-) defined for elements of P is called finitely characterized,
if {peP:®(p)} is finitely characterized. The next example presents such a

property.

ExaMmpPLE 1. Fix new. An element pe P is said to be nonempty at level
n, if pt"l~ 4" # . Let P'={peP :p is nonempty at level n}. Then it is
immediate that VpeP[peP’ <, (p)eP']. Thus P’ is finitely charac-
terized, and therefore, the property “being nonempty at level #” is finitely
characterized. Note that P” in Definition 3 is equal to P’ here.

The next lemma states that finitely characterized subsets and inter-
sections of finitely characterized subsets are complete metric spaces with

132 HORITA, DE BAKKER, AND RUTTEN

the original metric restricted to them. This lemma will be used in the proof
of full abstraction to show that the domains of denotational semantics to
be presented below are complete metric spaces.

LemMAa 2. (1) Every finitely characterized subset P’ of P is closed in P.

(2) For every family P of finitely characterized subsets of P, (P is
closed in P.

Proof. Omitted (see the proof of Lemma 2 of [HBR90]).

3. A NONUNIFORM LANGUAGE WITH PARALLEL COMPOSITION

The first language % is a nonuniform language with recursion and
parallel composition but no communication.

First, an operational model ¢ is introduced in terms of a Plotkin-style
transition system.

Then a denotational model 9, is defined compositionally by means of
interpreted operations of the language, with meanings of recursive
programs as fixed points of the denotational semantic domain, a complete
metric space consisting of sets of streams of pairs of states.

The correctness of &, w.r.t. O, is established, as in [Rut89] and [BR91],
by means of the fixed point method introduced in [KR907.

Finally, full abstraction of &, is shown by means of a context with
parallel composition:

Given two statements s, and s, with different denotational
meanings, a suitable statement T is constructed such that the
operational meanings of s, || 7 and s, || T are distinct.

For constructing such T, a combinatorial method called the testing method
is introduced in Lemma 13 (Testing Lemma). By means of this, the full
abstraction of &, w.r.t. @, is established.

3.1. The Language ¥,

The language % is the simplest nonuniform concurrent language with
recursion: It has parallel composition but no communication, and its
elementary actions consist only of value assignments to variables.

Note that sequential composition as in [BKO88] is not included in this
language: We use prefixing of assignment statements as in [Mil80], where
action prefixing is used in a uniform setting, for simplicity of models for the
language. However, there is no difficulty in constructing a fully abstract

FULLY ABSTRACT MODELS FOR CONCURRENCY 133

denotational model for a language which is like %, but which has general
sequential composition instead of prefixing,

(From now on we use the phrase “let (x €) M be --- to introduce a set
M with variable x ranging over M.)

Notation 2. (1) Let (ve)V denote some abstract domain of values.

)
(2) Let (x€)IVar denote the set of individual variables.

(3) Let (0 €)2 denote the domain of states: X = (IVar — V).
(4) Let (e €) VExp denote the set of value expressions.

(5) Let (b e)BExp denote the set of Boolean expressions.

We assume a simple syntax (not specified here) for e and b. “Simple”
ensures at least that no side effects or nontermination occurs in their
evaluation. The evaluations of ¢ and b in state ¢ are denoted by [e](s) and
[6](c), respectively. The full abstraction of a denotational model is
established under this assumption.

Let X range over RVar, the set of recursion variables, and let & range
over SVar, the set of statement variables. Note that recursion variables are
used as names of statements defined by recursion, while statement variables
are used as place holders for defining contexts of a language.

The language %, is introduced as a subset of £, a language with place
holders.

DEFINITION 4 (Language %). (1) The set of statements of the non-
uniform concurrent language (Se)£F is defined by the following
BNF-syntax:

S =0 |(x:=e); S| If(b, Sy, S5) 1Sy + S| S, || S5 |X] &

Here 0 denotes inaction; (x:=e); S denotes the result of prefixing the
assignment (x :=e¢) to the statement S; If(-, -, -) is the usual conditional
construct; + and | denote alternative choice and parallel composition,
respectively.?

Let FV(S) denote the set of statement variables contained in S.

(2) Let (s€) % be the set of statements with not statement variable.
That is, £ ={Se L} :FV(S)=}. For feSVar, let ¥i={SeL}:
FV(S)={&}}.

(3) The set of guarded statements (g €) %, is defined by the following
BNF-syntax:

g:=0|(x:=e);s| If(b, g,,82) 11 + &2 &1 Il &2

3 In this language, the precedence of ", ‘+’, and ||" is higher than that of *; occurring in
the construct If(-, -, -).

134 HORITA, DE BAKKER, AND RUTTEN

(4) We assume that each recursion variable X is associated with an
element g, of %, by a set of declarations D= {<X, gx >} xcrvar- A program
consists of a pair <{s, D).

In the sequel of this section, we fix a declaration set D=
{<X’ gX>}XeRVar'

For every be BExp, we regard the construct “If(b, -, -)” as a binary
operator on statements. Also, for every xeIVar and ee VExp, we regard
the construct “(x :=e);-” as a unary operator on statements. Thus we get
as single-sorted signature &, with the sort of statements; the languages & {*
and %, can be formulated as the set of terms and the set of closed terms
generated by %, respectively.

We introduce the notion of a context and some uses of it as follows:

Notation 3. Let &#* be a language formulated as the set of terms
generated by a signature ¥ and a variable set {&,}.

(1) For Se.#* and a sequence of distinct variables (&, ..., &,,), the
pair {S, (&, .., ¢&,)) is called a context of #* We sometimes write

always assumed that FV(S)< {{,, .., €}

(2) For a context Sy, .., and S;,..,S,e&* the notation
SL(S,, s S/(E4, ...y €,,)] denotes the result of simultatneously replacing &;
in § with S;, i € 2. More simply, we sometimes write S, . ,[S,, .., S,] for

S[(Sl, () Sn)/(éla ey én)]

(3) Let # be an interpretation, i.e., a set of interpreted operations for
the signature & with an underlying domain P (see [Rut90] for a formal
definition of an interpretation for a signature); let S, ., be a context.
For py, .., p,€eP, let [S]” [(&4, ... E,)/(p1s - P,)] denote the interpreta-
tion of S under # with the assignment of the value p; to the variable
&, ien More simply, we sometimes write [Sy, . 17 (py,..p,) for

[[S]]j [(ph Bl pn)/(él’ R én)]

3.2. Operational Model 0, for &,

The operational model ¢, rests on a transition system —, of the style of
[Plo81]. The transition relation —, (¥ xZ)x (¥ x2) is defined as
follows. For s, s, %, and o,, 0,€ 2, we write {s,, 0,y —, {5,, 0, for
({8,,0,),{82,05))€ —, for easier readability.

DeriNiTION S (Transition Relation —). The transition relation — is
defined as the smallest relation satisfying the following rules (1) to (6). For

FULLY ABSTRACT MODELS FOR CONCURRENCY 135

cel, xelVar, and veV, the notation ¢[v/x] is used to denote a state o’
which is the same as ¢ except that ¢'(x) = .

(1) {(x:=e)s,0>—<s al[e](c)/x]).
(2) <s1,0'>_>1 <S’ a’>

<If(b5 Sl: SZ)’ 0-> > <S1 OJ>
(5,,6)—=,<s,0")

(If(b, 51, 55), 069 =1 <s5,0")

(s,0)—>,£s,0")

<S1 +S27 O-> —>l <S> O'(>
<S2+Sls 0'> —)1 <S3 OJ>
<SI>O->_)1 <S’ O">

syl sp,0> = (sl s5,0)

(syll s, 00 =1 sy lls,0)

(6) <gX? 6>—+1<S,) O-I>

(X, 0)—>,<s,0")

The last rule, called the recursion rule, stipulates that for each declaration

(X, gx> €D, transitions of the recursion variable X are derived from those
of its body gy, as usual.

([el(a)=11)

3) ([eI(a)=1f)

({X, gx»> € D).

Let us call a statement se.%, finitely branching iff for every oceX,
{(s'a'YyeF xX:{s,0)—,{s',a')) is finite. Then, the transition rela-
tion —, is finitely branching in the following sense:

LeMMA 3. Every s€ L, is finitely branching.

Proof. By induction on the structure of s. See the proof of Lemma 3 of
[HBR90] for details. |

An operational model 0, is defined by means of —, as the fixed point of
a higher-order mapping ¥/¢.

DEerFINITION 6 (Operational Model 0O, for %)).

(1) Let MY= (% (2> p.(Z<?))), equipped with a metric d
defined as in Section 2. Then, let ¥{: M{ — MY be defined as follows: For
feM¢{, se %, and c€Z,

U {0’ -A(s)a) : (s, 0% >, {5, '}
PN =S i 3¢5, oY (s, 09—, <sha'd],

{e} otherwise.

643/115/1-11

136 HORITA, DE BAKKER, AND RUTTEN

The right-hand side of the above equation is closed by Lemma 3, and
therefore, indeed, P{(f YyeMY. Moreover, it is immediate from the above
definition that for f, f'e MY, d(P{(f), Y{(f))<xk-d(f, f'), where k(<1)
is the fixed positive real number introduced in Section 2. Thus, ¥{ is a
contraction from MY to M{.

(2) Let the operational model ¢, be the unique fixed point of ¥¢. By
the definition, one has 0,: £ — (£ — p..(2<?)), and for each se ¥ and
cel,

U {o"-0lsT(0"): <5, 0) =, <s', 07>}
O[s1(e) = if 3¢5, 0")[<s,0> =1 (s, 0701,

{e} otherwise.

Note that ¢, is not compositional, as the following example shows.

ExaMPLE 2. Let xeIVar. Then
Oil(x:=0); (x:=x+1); 0] = O,[(x :=0); (x :=1);0]
= (4o : {(a[0/x], a[1/x])}),

but

Ol((x:=0); (x :==x+1);0) | ((x :=2); 0)]
#0,[((x :=0); (x :=1);0) | ((x :=2); 0)].

3.3. Denotational Model @, for ¥,

The denotational model £, is defined compositionally by means of inter-
preted operations of the language.

The denotational semantic domain P, is a complete metric space
consisting of sets of streams of pairs of states. The meaning of a recursion
variable X with the declaration (X, g, is defined as the fixed point of the
contraction which maps each process pe P, to the interpretation of gy
under the interpreted operations with the assignment of p to X. It turns out
that the fixed point is the unique solution of the equation X = g, under the
interpretation consisting of the interpreted operations.

The domain P, is defined by:

DEerINITION 7 (Denotational Semantic Domain P, for %,). (1) Let Q,
be the unique solution of Q,=2w((Zx2X)xid.(Q;)). One has Q,=
(FxZ)y<e.2)yu (T xZ)~

FULLY ABSTRACT MODELS FOR CONCURRENCY 137

(2) For pep,(Q,), and re(ZxZ)<®, the remainder of p with
prefix r, denoted by p[r], is defined by p[r]= {geQ, :r-qep}.
. (3) The initial state of a sequence ge Q, U (ZxX)*, denoted by
istate,(¢), is defined as follows: Let istate,(q) =g if g= (<0, ') ¢’, and
let istate,(g)=¢c" if g=(0").

4) .For PE€Pn(Q) and ceZ, p{o) is the set of those elements of
p whose initial state is . That is, p{o) = {gep :istate,(g) = .

(5) Let pe p,(Q,), and ne w. The process p is uniformly nonempty
at level n iff

Vre (2 x2)" [plr]# @=VYoe X[p[rl o) # S]]

Moreover, p is uniformly nonempty iff it is uniformly nonempty at every
level n e w.

(6) The set P,, the domain of processes for %, is given by
P, ={pe 9.(Q,): pisuniformly nonempty }.

Remark 1. A subset P of 9,.(Q,) is said to be closed under taking
remainders iff VpeP, Vre(ZxZ2)<?[p[r]l# & =p[r]1eP]. Given an
arbitrary subset P, of ¢,.(Q;), it is routine to check that the largest subset
P; of ,.(Q;) which is included in P, and closed under taking remainders
is given by Po={pep,(Q,):Vre(Zx2)< [p[rl1#Z=plrlePol}.
Thus P, is the largest subset of g,.(Q;) which is included in
{p€ ».(Q,): p is uniformly nonempty at level 0} and closed under taking
remainders.

It is needed that each element of peP, is uniformly nonempty, for
defining a parallel composition || as a binary operation on P, in the sequel.

LEMMA 4. The set P, is closed in ¢ ,.(Q,), and therefore, P, is a com-
plete metric space with the original metric of §,.(Q,) restricted to ir.

Proof. The closedness can be established using Lemma 2. See the proof
of Lemma 4 of [HBR90], for details. {

The interpretation .4, for the signature of % is defined as follows:

DerniTION 8 (Interpretation %, for Signature of %). (1) 0,=
{(c):0eZ}.

(2) For xelVar and ee VExp, the function asg,(x,e):P,—>P,,
which is the interpretation of the unary operator “(x:= e);-” on
statements, is defined as follows: For every peP,, asgi(x,e)(p)=
{(<o,0[[el(a)/x]))-p:ce X}, where ({a,a[[e]l(c)/x])) p denotes the
concatenation of ({a, a[[e](c)/x])) and p.

138 HORITA, DE BAKKER, AND RUTTEN

(3) For beBExp, the function if(): P, x P, —» P, which is the inter-
pretation of the binary operator “If(b, -,-)” on statements, is defined as
fOHOWSI For every P P2 € Pl’ lf(b)(PbPz) = Uaez [lf(ﬂ:b]](o-) = tt, P1<0>a
paKo))]

(4) ForpeP, pn((£xZ2)xQ,) is called the action part of p and
denoted by p*, and the set pn 0, is called the inaction part of p. The action
part of the alternative composition of two processes is the union of the
action parts of those processes, and its inaction part is the intersection of
the inaction parts of them. That is, for p,, p,€P,, p, ¥ po=p; Up; U
{(o):(0)ep npa}.

(5) For py,p,ePy, let p; # p, be the intersection of the inaction
parts of p, and p,. The parallel composition |[:P,xP, » P, is defined
recursively as follows: For every p,, p,e Py,

Dy |~lP1 =P Lpa)u(paLp)v(p, # p2)s

- (2)
pilLpa=U {o,6") (1[0, 0" Y] [p2) : p1 [0, 0" D1 # D}

Formally the operation || is defined as the fixed point of a suitably defined
contraction: Let M! = (P, xP,), @!: M! - M! be defined as follows: For
FeM|, and p;, p,€Py, QUF)(p1, p,) = QUF) (1, p2) v QHF)(p2s 1)V
(1 # p2), where QHF)(py, p2) = U {<o, ') - F(p,[<o, 0'>], p2):
pi[<o,0'>]1# I} Tt is shown that Q!(F)(p,,p,) is nonempty and
uniformly nonempty at level 0 as follows: For every geZX, suppose
=36’ [QUF)(py, po)[{o, ¢’ D] # B]. Then, by the definition of 2!, one
has m130'[p,[<0,06'>]1# &) and —136'[p,[{0, ¢'>]# &]. Thus, by the
fact that p, and p, are uniformly nonempty at level 0, one has
()€ (py # p,). Moreover, Q!(F)(p,, p,) is uniformly nonempty at level
nz1, since QYF)(s;,s,) and QL(F)(s,,s,) are uniformly nonempty at
level n by their definitions. Hence QI(F)(p,,p,)€P,. It is immediate that
Q! is a contraction. Let || =fix(Q!), and | = Q%(T]).

(6) Let 4 = {0, {asg,(x,e): {x,e) e IVar x VExp}, {if(b):b e
BExp}, +, |}.

The next lemma follows immediately from Definition 8 (5). We shall use
it for establishing the full abstraction of the denotational model %, defined
below.

LemMa 5. (1) <o, 0’y -gep [pas (ge(pi[o, a1 p)) vige
(pi T pa[<a, ')

(2) Vpy, p2eP[p, HP2=P2T|P1]-

In terms of the interpretation .4, the denotational model 2, is defined
as follows:

FULLY ABSTRACT MODELS FOR CONCURRENCY 139

DEerFINITION 9 (Denotational Model £, for %,). The model 9,: &, - P,
is defined by induction on the structure of s € #,.

(1) First, for each recursion variable X, £,[X] is defined as the fixed
point of a contraction defined in terms of the declarations. Let D=
{<X, gx>} xervar e the set of declarations. Let MY = (RVar — P,), and let
11,: MY - M? be defined as follows: For pe M{, XeRVar, I1,(p)(X) =
[ex]” LYY, o POY)Y, s Yi))], where {YT,.., Yiy,} is the
set of recursion variables contained in g,. (See Notation 3 for the notation
[gx]”" (---).) The mapping I7, is a contraction from MY to M?. Let p, =
fix(/1,). For X e RVar, let us define X2, the denotational meaning of X by
X% =po(X).

(2) Next, for a composite statement se€.%;, 2,[s] is defined as
follows: For each operator F of % with arity r, and sy, ..,5,€.4, let
D F(s,, ... s,)] = F"(@,[s,], .. Z,[s,]), where F*' is the interpreted
operation in .4 corresponding to F.

Several properties, including the so-called image finiteness for elements of
P, are introduced. It is shown that the denotational meaning of each state-
ment in %, has these properties; this fact is used to establish the full
abstraction of 2.

DeFNITION 10 (Image Finiteness for Elements of P;). Let peP, and
new.

(1) The process p is image finite at level n, written IFin{"(p), iff Vr e
(Ex2) VYo[{c'eX:r-{a,a yep"*t 11} is finite]. The process p is image
finite, written IFin,(p), iff Vne o[IFin{"(p)].

(2)di) We say that only a finite number of individual variables are
relevant to the nonterminating part of p at level n, written FIRN{(p), iff
there exists & € go(IVar) such that the following holds:

Vre(ZxX)", Vée ((IVar\Z) - V)" [re pt™
< Vien[nj(r(i)) | (IVar\Z) = ni(r(i)) I (IVar\Z)]
A LE@H(D) T E) O E(D))je2)iene P (3)

That is, for each re(ZxZX)", if repl®), then, in every step r(i)=
{md(r(i)), m3(r(i))» or r (ien), the value for xeIVar\Z is not changed,
ie, (x):m3(r(i)) M (IVar\Z)==i(r(i)) [(IVar\%'), and one may change
the wvalue nf(r(i))(x) (je2) arbitrarily, ie., (T): (<(7rf(r(i)) ALY
G(1)Dc2)ienept™ for arbitrary &e((IVar\&)— V)" Conversely, for
arbitrary e ((IVar\Z) - V)", if one has (x) and (}), then rept"l. (See
Remark 3 below for a motivation of this definition.)

140 HORITA, DE BAKKER, AND RUTTEN

(ii) Similarly, we say that only a finite number of individual
variables are relevant to the terminating part of p at level n, written
FIRT{"(p), iff there exists & € p(IVar) such that

Vge (Zx X)X, ¥ e (IVar\Z) —» V)" *1 [gep
= Vien[n3(q(i)) [(IVar\Z) = n}(¢(})) [(IVar\Z)]
A (e} (g(@) T XV V(D)) jer)ien ((g(n) [X)L E(n) epl. (4)
(iii) We say that only a finite number of individual variable are rele-
vant to p, written FIR (p), iff Vne o[FIRN{”(p) A FIRT{"(p)].
(3) P¥={peP,:IFin,(p) A FIR(p)}.
Remark 2. It is immediate that {pe P, : IFin,(p)} is the largest subset

of P, which is included in {peP, :IFIN{”(p)} and closed under taking
remainders,

Remark 3. (1) Note that for some set D of declarations and some
statement s, we cannot take one & € p(IVar) such that (3) holds for every
new and p=J[s]. For example, suppose IVar = {x, :new} and RVar=
{X,:new}, and let D={(X,, (x,:=1);X,.,>:new}, p=2[X].
Then, the greater ne w is given, the greater 4 € o (IVar) should be taken
so that one has (3).

(2) It is easy to check that for &,, X, € p,(IVar) with &, =% ,, the
property (3) (resp. (4)) for & =%, implies (3) (resp.(4)) for £ =& 5.

It turns out that the denotational meaning of each statement is a mem-
ber of P¥, which is used for establishing the full abstraction of 2,.

LEMMA 6. (1) The set P¥ is closed in P,.
(2) VpePf, Vre(ZxZ)~ [plrl1#J=plrleP{] That is, P} is
closed under taking remainders.

(3) The set P} is closed under all interpreted operations of & .
4) 2.[Z,]1<P}.
(5) Vpe2,[L,], Vre(Zx2)= [plr]l# D =plrleP¥]

Proof. Similar to the proof of Lemma 4. See the proof of Lemma 6 of
[HBRI0], for details. J

3.4. Correctness of 9, with Respect to),

The correctness of the denotational model is shown as in [Rut89]: For
the denotational model 2,, an alternative formulation, called an inter-
mediate model, is given, in terms of the same transition system which was

FULLY ABSTRACT MODELS FOR CONCURRENCY 141

sed for the definition of ¢;. Let @ be the intermediate model. Then the
drrectness is proved by showing that, for an appropriate abstraction func-
on «, both a; o @ and 0, are a fixed point of the same contraction, which
y Banach’s Theorem has a unique fixed point.

4.1. Intermediate Model for ¥, and Semantic Equivalence

First, the intermediate model @, which is an alternative formulation of
), is defined in terms of the transition relation —,.

DeriNITION 11 (Intermediate Model @, for %,).

(1) LetM,;= (% —P,), and let ¥,: M, —» M, be defined as follows:
or FeM,, se %,

iF)s)= {({a,0"))-F(s):0eZ A {s,0) =, <50 >}
U{(e):0eX A3, 0’ Y[(s,0) =, (s, a' D]}

‘he right-hand side of the above equation is closed by Lemma 3; ¥, is a
ontraction from M, to M,.

(2) Let @, =fix(¥,). By the definition, one has, for se %, that
Glsl=U {(<o.0"))- B[] :0e Z A (5,00 =, {5, 0"D}
Ui{(e):geX A 13 od[{s,0) >, (s 0" D]}

It turns out that {, is identical to 2,.

LemMa 7 (Semantic Equivalence for #,). (1) Let F be an operator of
with arity r, and let s,, ..., s,€ . Then one has

O[F(sy, s 5)] = F7(O1[51], o Ois,1).

(2) For se %, one has @\[s] = 2,[s].

As a preliminary to the proof of Lemma 7, we give the next lemma
stating that the operation || is distributive w.r.t. set-theoretical union.

Lemma 8 (Distributivity of I in P)). For k,I=>1, and p,,.., Pk,
77 5 P EPY,

UIpdTULpI= U [edp2

iek jel Cijyekxi

Proof. Omitted (see Appendix 2 of [HBR90]). §

142 HORITA, DE BAKKER, AND RUTTEN

Proof of Lemma 7. (1) Here we prove the claim for the operator |.
For the other operators this is proved (more straightforwardly) in a
similar fashion. Let H, = (£, x % — P,), and let F, GeH, be defined as
follows: For s, s,€ %, F(sy, 52)=@1[[51 | 21, G(s1,52)=0[s.] || Oi[s2].
Moreover, let #!: H, - H, be defined as follows: For feH, and s,,

SZE°?1’

F¥(s1,5)={(0): 13st, 0" Y[{s1,0) =1 K81, 07)]
A —13Csh, 0D [<82, 0) =1 (85,0) 1}
Then #! is a contraction. Let s,, 5,€ &;. By the definition of @, and —,,
and Lemma 3, one has F(s,, s,) = & |(F)(sy, $,). That is, F=fix(#]).
Next, let us show that G =fix(#!). By the definition of ||, one has
G(sy, 52)= (@1[[51]] L @1[[521]) v (@1[[5'2]] L @1[51])U (@1 [s,] # 51 [s21)-
Thus, for showing G = fix(F), it suffices to show (x): (@,1s,1 1 O,[s1)=

FUG)(s,,55) and (1): (G,[s,] # Oi[s;]) = F F(G)(s1, 52). The fact (x) i
shown as follows:

@1[[31]] lL@l[[sz}]
=U {({o, ")) (6i[5,1[<o, o' Y1 OiLs5]) : Gi[s,][<o, ' D] # &}

Yy {(<a, a'>)-<u (BIsiT: <51, 0> =, <0, a'>}ﬂ&i[s211> :
35 (s1,) 1 <5h, a'>]}
Yy {(<o, a'>)-(u (BIs1T Billss] : sy, 05—, <sa,o~'>}):

35'1[<31:<T>—>1<S'1,0'>]} (by Lemma 8)

U {(Ka, o' 0) (O Ls10 T Ols,]) : 51y o) — (s, 07 D)
F

HG)(s1, 52)-

I

FULLY ABSTRACT MODELS FOR CONCURRENCY 143

The other fact (}) follows immediately from the definition of #. Thus

one has G(s;, s,)=F(G)(sy, s,), ie, G=fix(F!). Thus, by Banach’s
Theorem, one has F=G, ie.,

Vsi, Szex[@l[[sl [s,]= @1[[51]] H @1[[521]]-

(2) First, let us show, for XeRVar, that (): @,[X]=2[X]. Let
(X,gx>€eD. Then,

O,[X1=0,[gx] (by the definition of &)
= [[gxl]fl [((QIUZYX]L ’@IHY[(X]])/(Yf: ey Y;‘(/X))] (bY(l))a (5)

where {Y7¥, .. Y,’(‘X) i1s the set of recursion variables contained in g,.
Hence (AX e RVar 0,[X]) is the fixed point of I7, defined in Definition 9.
Therefore by the definition of %,[X], one has (f). It follows from this
and (1), by induction on the structure of se.%, that Vse [[s] =
2,(s11- 1

3.4.2. Correctness of 9, with Respect to O,

An abstraction function o,: P — (X > 0,(2 <)) is defined as follows.
First, it is defined as the fixed point of a higher-order contraction. Next, it
is shown that for a process p, «(p) is characterized as the set of histories
of executable elements of p, where the notions of history and executability
to be formally defined below.

DEFINITION 12 (Abstraction Function o, for #). (1) Let Mi=
(P* > (2 - p,.(2<%))), and let 4,: M, > M7 be defined as follows: For
FeM;$, pePf¥, and 02,

(F)(p)o) =) {(¢")-F(p[<a,a')1)(e") : p[{0, 0")] # T}
vif((o) ep, {e}, &)

Note that the right-hand side of the the above equation is nonempty, sipce
p is uniformly nonempty at level 0. Thus the mapping 4, is a contraction
from M to M7.

(2) Let a, =fix(4,). By this definition, it holds for pePfand cel,
that

2 (p)(o) =) {(¢")-a,(p[<a, 0’ >])(0") : p[0, 0 1=}
vif((a)ep, {e}, D).

The abstraction function is to be characterized in another way. First, we
need some preliminary definitions.

144 HORITA, DE BAKKER, AND RUTTEN

Intuitively, a sequence ({o;, 0}>); in a process represents a poss?bility of
executing the step {a;, 0/ if the process is in the state o;. After this execu-
tion. the process is in the state o!. Thus a sequence ({a;, o;>); such that
the second component of each element {o;, o) is the same as_tl?t? first
component of the next element {0, ,0;, 1, represents a pos§1b111ty of
executing the steps {0y, oY, {O15 G5 wes and therefore is called
evecutable. In other words, a sequence is executable when it has no gaps.

DerinTioN 13 (Histories of Elements of Q,). Let e Q; (Zx2)=e.
(1) The sequence g is executable, written Exec,(q), iff
veou{n},
340,013)es [4= ({01 01 D)ien A Viev[i+ 1 ev=0]=0,11]]

vikew, 30,000)icks

30, [q= (04 01D)ick (T4) A Viek[o;=0,,11]-
Let E,={geQ,u(ZxZ)"*: Exec,(q)}. For geZX, let E (o)=
qeE\{¢} :istate,(q) = o}

(2) Let g be executable. The history of g, denoted by hist,(g), is
defined by
. (01)iev if g=(<0:0{))icv
hist,(q) = . ,
D=4 it 9= (o e (o)

Now we can give another formulation of «, as follows:

LemMa 9 (Another Formulation of Abstraction Function o). (1) For
peP¥, oeX, one has a,(p)(o) = {hist,(¢) :gep nE (o) }.

(2) Vk=1,9py, ., preP¥, Vol (Uice [pi])o) = Uiez Loi(pi)(o)]].
Proof. Omitted (see Appendix 3 of [HBR90]). §
By means of this lemma, one has the correctness of Z,.
Lemma 10 (Correctness of 9,). (1) o, 00, =0;,.

(2) @,°2,=0,.

Proof. (1) By showing that a0, is the fixed point of ¥ defined in
Definition 6.

(2) Immediate from (1) and Lemma 7 (2). |

3.5. Full Abstraction of 2, with Respect to O,

The full abstraction of &, is shown by means of a context with parallel
composition:

FULLY ABSTRACT MODELS FOR CONCURRENCY 145

Given two statements s,, s, € %, with different denotational
meanings, a suitable statement T called a tester is con-
structed such that the operational meanings of s, || 7 and
s, | T are distinct. (6)

A combinatorial method for constructing such a tester is proposed in
Len'.nma 13 (Testing Lemma). Using this method, we can construct testers
having the following property:

Given a process and a finite sequence r=({a,,0}), ...,
{o,,0,>), we can construct a tester 7 and an executable
sequence 7= ({6, 61),..,{G, 6% ») with k >n such that for
every process p’, the parallel composition p’ i D [T] can
execute 7 if there is some sequence ¢ such that (<o, d}), ...,
<0n’ O-:1>) : qEP/a i'e" p,[<617 Gll >’ e <O-n’ 0';,>] # ga and
the converse of this holds for p’ = p. Intuitively, for such T
and 7, the process p is forced to execute the steps (g, '), ...,
{6,, 0, (perhaps not consecutively but in this order)
when p | ,[T] executes the steps ({&,, 61D, ... {G, Gk))
consecutively.

By the above property, we can construct such testers T as in (6) as follows:

If s, and s, are distinct in their denotational meanings, then,
putting p,=2,[s;] (i=1,2), there exists some sequence r
such that p,[r]#& but p,[r1= (or vice versa). By
constructing a tester 7 and an executable sequence 7 for
r and p=p, as above, one has FeZ[s,] |l 2[T] and
F¢ D,[s,] | 2,[T]. Thus one has a difference between the
operational meanings of the two statements s, | 7 and s, || T.

First, the notion of full abstraction is defined:

DEFINITION 14 (Full Abstraction). Let % be a language and (' an
operational model for #. A denotational model & is said to be fully
abstract w.r.t. the operational model ¢ iff for every s,, s,€ %, one has
VEeSVar, VSe Li[O[S ¢ [s,1] =[S (52111 = Z[s,] = Z[s.]-

For a language % which can be formulated as the set of terms generated
by a single-sorted signature, and an operational model ¢ for it, a fully
abstract compositional model for & w.r.t. ¢ is unique in the following
sense and exists if % has no recursion, as was shown in [BKOS88].

LeEmMa 11 (Uniqueness and Existence of Fully Abstract Compositional
Model). If two compositinal models £ and 2" are fully abstract w.r.t. C,

146 HORITA, DE BAKKER, AND RUTTEN

then there is an isomorphism from @[L] 10 D'[L]; ie., there is a bijection
0:7[L]-> D' [L]:ie, there is a bijection ¢ : D[L] — D' [L] such that
for every operator F in £ with arity r, and py,..,p,€ D[L], one has
O(FP(p1 s) =F7(@(p1), s o(p,)). In other words, the fully abstract
compositional model is unique except for isomorphism.

Moreover, there exists a fully abstract compositional model, if & has no

recursion.
Proof. See Proposition 7.1.1 of [BKOSS]. §

Let us proceed to establish the full abstraction of @, w.r.t. ¢,, stated by
the following theorem, under the assumption that V is infinite. The reader
might expect that the same result can be obtained without this assumption,
but it is necessary. In fact, if V is finite, then &, is not fully abstract w.r.t.
¢, (see Example 3 in Section 3.6.1).

TuroreM 1 (Full Abstraction of 2,). Let V be infinite. Then, for every
51, S,€ Y, one has

15,1 # % [s-] =3Te LD [, 1 T 20TT) # e (21 [5:] T 2, [T

To establish Theorem 1, we present the following lemma, from which
Theorem 1 follows easily. (In the remainder of this paper, we fix an element
t of V, and for Zegp (IVar) we set X,={ceX:Vxe(IVar\¥)
[o(x)=71}.)

LemMMA 12 (Uniform Distinction Lemma for #). Let Z € (g (IVar)\
().
(1) Forevery re (Z,x2,)<%,
Vo, peP¥[p [r]# D Ap,[r]=C
=Vo,€ 2, 3Te Llay(p, [ZLTTN oo\ (ps | 2, [TT)(00) # B11.
(7)
(2) Forevery ge (X, x2y)<“ -2y,
Vpi,p.eP¥lgep,\p,
=Yo,€ 2, 3Te Lloy(p, | 2 UTD)0o)\oy(p> | 2,[TT)(00) # B13.
(8)

Proof of Theorem L Let py=2,[s,], p»=2,[s,], and suppose p, # p,.
We can assume, without loss of generality, that there exists ¢ such that

gep, and g¢p,. The proof is given by distinguishing two cases according
to whether ¢ is infinite or finite.

FULLY ABSTRACT MODELS FOR CONCURRENCY 147

Case 1. Suppose ¢ is infinite. First, let us show by contradiction that
there is an n€w such that ¢"V¢ (p,)"). Assume, to the contrary, that
¥new[p,[g"" 1% &1 Then, by the closedness of p, one has g€ p. which
contradicts the fact ¢¢p,. Hence, there is new such that p.l¢"]1=@.
From the fact that FIR,(p,) (i=1,2) and from Remark 3(2), it
follows that there is an Z e (p(IVar)\{}) such that (3) holds for
p=p; (i=1,2). Fix such an %, and Iet 6= (Axe(IVar\Z):7) and
r=(<(nf(q(i)) FZ)UG)ca)ien Then re(X, x X,)" It follows from the
fact that ¢"le((p))"N\(p,)") and (3), for p=p, (i=1,2), that
re((pl)["]\(pz)["]). Thus applying Lemma 12(1), one has 37Te
SACACA TN RAVANCACARINEZA VU EI 3]

Case 2. Suppose ¢ is finite. Then one obtains the same result in a
similar fashion to that for Case 1, but using Lemma 12(2) instead of
Lemma 12(1) used in Case 1. |

3.5.1. Proof of Lemma 12

Testers for proving Lemma 12(1) (resp. Lemma 12(2)) are constructed
by induction on the length re (X, x X,)¢ (resp. g€ (X x Z4)<“-Z4).
The following lemma is used to construct testers for r (or ¢) with length
n+1 by means of testers for r (or ¢) with length n. The assumption that
V is infinite will be essentially used in the proof of Lemma 13.

LeEmMA 13 (Testing Lemma for %). Let X e (p(IVar\{Z}), peP¥,
and ¢', 0", 6o€ X . Then there are two finite sequences r|, ra€ (2, x X)=
such that the following hold:

(1) r-Ca',0") -ryeE (o).
(2) For every tester T'e€ %, there exists another tester Te &, such
that the following hold:

i) @.[T1lr,-r1=%I[T'],

(i) The process p is forced to execute the step {a'.c") and for-
bidden to execute any other steps when the parallel composition p || 2,[T]
executes the sequence: r, -{a’,a" -ry. That is, the following holds for every

q' €Q:
ri-a’ya"y g ep I AIT]
=p[{a, "Y1 # T nqepla,adITAITT (9)

The proof of this lemma will be given later. First, we will prove the
following corollary, and thereby, Lemma 12.

148 HORITA, DE BAKKER, AND RUTTEN

COROLLARY 1. Let X e(p(IVarN\{T}), pePf, (0',0")eZy X2y,
and oy X 5. Then there are two finite sequences p, p,€ (X y) = such that
for every tester T' € ¥, there exists another tester T € ¥ such that, putting
o,=last(p,-0" - p,), the following hold:

(1) For every p' e P¥, one has

Vp e Z<[p'[Ca’ ¢" Y1 # D A pea(p'[(o, "1 2T T)(o))
=p,-0"-py-p €ay(p' T ZITT)(00)]. (10)
(2) For p'=p, the converse of (10) holds. That is,

Vp'eZ<“[p,-c" 'Pz‘PIEOH(PTl D[T1)(oo)
=p[{a',a"y]1#0 A p'eay(p[<a’, " YT1T [T T)(01)]. (11)

Proof. Take r,, r, as in Lemma 13, and put p,=hist(r,),
p,=hist,(r,), and let o, =last(p, " p,). Also, for T', take T as in
Lemma 13.

Part (1). Let p'eP¥, and p'e Z=“. Suppose p'[{c’,¢")]# and
p'ea(p'[Ka,a">1 | 2,[T'])(c,). Then, by Lemma 9(1), there exists
q’e(p’[(a',a”)]ﬂ@l[[T’]]) such that ¢'eE,;{a,) A hist,(¢')=p’. Fix
such ¢’. By Lemma 13(1), one has r,-<c’, ") ry-q'€E{dy). By
Lemma 13(2)(i), ¢'€ (p'[o’, 6")1l 2,[T][r,-r,]1). Thus, applying the
<=-part of Lemma 5(1) successively, one has r,-q'e(p'[<{c’,0">]]
[T]), <d',a">-ry-q'e(p' | Z[T]lr,]1), and ry-<a',6") rs-
q"€(p’ | 2,[TT). Hence, p,-¢"-p,y-p" = hist,(r, - (o', 0")-r,-q') €
a(p" It 2, [TT)(0o).

Part (2). Let p’e <%, and suppose p, -cr”-pz‘p’eocl(pﬁ%[[j"_l])(ao).
Then, by Lemma 9(1), there exists ¢’ such that (x): g'eE {o,> A
hist;(¢')=p’. Fix such ¢q. By (9), one has p[{c,c")]# and
q'ep[<a’,a">1 | ,[T']. Thus, by (), ome bhas p'=histi(¢’)e
o, (pl<a’, o> Z[T'T)oy). 1

Proof of Lemma 12. Let X e (g (IVar)\{Z}).

Part (1). We will prove that (7) holds for every re (X, x2,)<® by
induction on the length of r.

Induction Base. Let lgt(r)=0, ie., let r=¢, and let p,, p,e P¥. Then
one has (7) vacuously, since Vpe P} [p[e]=p # @], and therefore it does
not hold that p\[r]1# & A p,[r]1=.

Induction Step. Let ke w, and assume that the claim holds for every r
such that lgt(r)< k. Fix an arbitrary sequence r of length k+ 1, say

FULLY ABSTRACT MODELS FOR CONCURRENCY 149

r={a',6")-F Let p,, p,e P¥ such that (x): (i) p,[r] # &, (ii) p,[r] = J.
Finally let o6,eX,. We distinguish two cases according to whether
p2[{d’,6")]= & or not.

Case 1. Suppose p,[<cd’,¢">] = . Then, applying Corollary 1 with
Pp=p, and T'=0, there are p,, p,, T such that:

(i) VpeP¥, Vo' eZ<e[p[<o’, d">]
#F A pea(p[<a,a">1T0,)(0)
=p,-0"py-p'€a;(p | ZLT(06)], (12)

(i) Vp'eZ<®[p,-a"-py-p'€ay(ps | Z[TT)(0,)
=p,[K0", 0" Y1# B A p eay(po[<o, 0" >1T0,)(a))],

where ¢, =last(p,-¢” - p,). By (*)(i), there exists p’ea,;(pea,(p,[*] ﬂﬁl)
(0,)- Let us fix such a p’. By (12)(i) for p=p,, one has p,-¢"-p,-p'€
ai(py | 24[T])(o,). Next, assume (for the sake of contradiction) that
P1-0"-py-p'€oy(py | Z1[T])(0o). Then, by (12)(ii), one has p,[{d’, 6"}]
¢, which contradicts the fact that p,[{¢’, 0")] = . Hence, p; -a" - p5-
p eay(py || 2,[T])(00).

Case 2. Suppose p,[<c',c">]#J, and let us denote p,[{d’,0")]
and p,[(o', ¢">] by p} and p5, respectively. Then, one has, by (*), that

(T): pi[F1# & A p5[F]1= . Applying Corollary 1 with p=p,, there are
P1, po such that for every T' e %, there exists T satisfying

(i) VpeP¥, ¥p'eZ<°[p[<d’, 0")]
D A pea(p[{c,a" 1T [T D)0y
=p,-0"pyp eas(p | ZITT)(00)], (13)
(il) Vp'eZ<®[p,-a"-py-p €oy(p> | Z[T])(00)
=p,[<0', 0" Y1# D A p eay(pa[<o 6" >1T LT T)(0,)],

where o, =last(p, -¢” - p,). By the induction hypothesis and (f), there are
T, and p’ such that

p' eay(py 1 20 Te]) o Ny (ph | 24 [Tel)(a). (14)

Let p=p,-0"-p,-p’, and take T such that (13) holds for T'=T,. By
(13)(i) for p=p, and (14), one has peo,(p, || Z;[T])(o,). Next, assume
(to obtain a contraction) that p,-¢”-p,-p € (P, | Z,[T])(0o). Then, it
follows from (13)(ii) that p’eo;(p5 | Z,[To])(c,), which contradicts (14).
Thus, p,-¢"-py-p ¢ (p: | 2,[T])(0y). Summing up, in this case too

there is a p such that pea,(p; | 2, [T])(0o)\y(p2 1| Z1[TT)(5,).

150 HORITA, DE BAKKER, AND RUTTEN

Part 2. In order to establish part (2), we will prove that (8) holds for
every ge (X4 x Zge)<? -2, by induction on the length of g.

Induction Base. Let lgt(g)=1, say g=(¢'). Let p,, p,€P¥ such that
gep,\ p,, and let o€ X, Since & is finite and nonempty, we can put & =
{x1, . x,}. Then, let us set 7= (x, :=0'(x;)); ..; (x,:==0'(x,)); 0, and £ =
2,[TT. By the deﬁnitio~n of ||, one has ({65, 61D, .. {Op_1, 00,0)ep, |,
ie., (0%, .., 0. e (p, | 1)(o,), where o;=0ao[(0"(x}), ..., 07 (X;))/(X15 s X1)]
(fer+1). Let us prove, by contradiction, that ({c5, 67D,
Co,_1,0,),0')¢p, [l 1. Indeed, if ({05, 01D, ... 1,070, 0")€ps L,
then the first r-steps (a5, 01D, .., (o,_,,0,) must stem_from the right-
hand side t Thus, it must hold that (d')ep, | t{({64, O1)s wrs
{(og._,,0.>)1=p, | 0,. However, this is impossible since (a") ¢pa.
Summing up, ome has ({04,010, {0 1,00, 0)épslt, ie.,
(61, s 0) €0y (p2 || 2)(0g).

Induction Step: Similar to the induction step of part (1). f§

Finally, let us prove Lemma 13. A crucial ingredient of the proof is the
fact that the value of a variable can be changed from any value to any
other value in one atomic step, by means of an assignment statement.

Proof of Lemma 13. The proof is formulated by supposing that & is
reduced to one variable, Z = {x}, which simplifies the proof, allowing us
to identify a state o € X, with its value o(x)e V. However, the lemma still
holds when & is composed of more than one variable, as established in
Appendix 4 of [HBR90]. For veV, let 6(v)=(AyeIVar :if(y = x, v, D)).

Trying to construct a desired tester T, we first observe that the composi-
tion p | 2,[T] must be in the state ¢’ when p executes the step <{g’, ¢").
Therefore, if o4(x)# o’'(x), then 2,[T] must execute the step (o,c’) for
some o, and therefore, T must have an assignment “x:=¢'(x)” in it
Moreover, we need a trick for forbidding p to execute the step <o, 0’
instead of 2,[T] and forbidding %,[T] to execute the step <{o’,0")
instead of p. The proof of Lemma 13 is given by distinguishing two cases
according to whether go(x)=0'(x).

Case 1. When o4(x)=0c'(x), we can easily construct two sequences r,,
r, satisfying (1) and (2) of Lemma 13 as follows: Let r,=¢, r,=
(6", &(vy)), where v, is chosen such that

(1) v, #0"(x), (i) v,¢{veV:{d,a"y -(a",d(v)>ep?}. (15)

Note that the right-hand side of (15)(ii) is finite since p is image finite by
Definition 10, and therefore, there is a v, satisfying (15). It is immediate
that Lemma 13(1) holds. Let us show Lemma 13(2). For every T' € %, let
T=(x:=v,); T'. It is immediate that (2)(i) holds. Let us show (2)(ii), i.e.,
that (9) holds for every ¢'€Q,.

FULLY ABSTRACT MODELS FOR CONCURRENCY 151

Suppose <c’,6"> -<{a", G(v,)>-q' €p | Z,[T]. Let us show that the first
two steps, (¢',0") and <¢”, 6(v,)), must stem from p and Z,[T, respec-
tively. The first step cannot stem from 2,[T7] by (15)(i). Also, the second
step cannot stem from p by (15)(ii). Thus one has the desired result.

Case 2. When oy(x)#0¢'(x), we can construct two sequences r,, r,
satisfying (1) and (2) of Lemma 13 as follows. Let r, = {0y, ¢’') and r,=
{o", &(vy)), where v, is chosen such that

() vi¢{reV:iag, 0"y <o 0") <a" 5(v)yeptT),

(i) v, #0'(x),
(i) v, #a"(x), (16)
(iv) v, ¢{veV:{d, ") -{d" G(v))yept}.

Note that the right-hand sides of (16)(i) and (iv) are finite, since p is image
finite by Definition 10, and therefore, there is v, satisfying (16). It is
immediate that (1) holds. Let us show (2), i.e., that for every T’ € ¥, there
exists Te % satisfying (2)(i), (2)(ii). A tester T with these properties can
be constructed in the following format: For &,, 7', 0,, 0,€V, and se %,
let

F(Gy, 7', Dy, 05, §)=If(x =10y, (x:=0"); (x:=05,); 8, (x :=0,);0). (17)
We set T= F(oy(x), 0'(x), v, v,, T'), where v, is chosen such that (): (i)
v, #0"(x), (ii) vy #v,. In this case also, it is immediate that (2)(i) holds.
Let us show (2)(ii), ie., that (9) holds for every ¢'€Q,. First, put
U'=9[T'], t=2[TI. ~

Suppose {a,, 0’ >-<{a’,a")-{a",d(v,))-¢q €p | t. Let us show that the
first three steps, {gq, o', {d’,¢"), {d",d(v,)), must stem from ¢, p, 1,
respectively.

First, let us show by contradiction that the first step (oo, ') cannot
step from p. Assume that the first step stems from p, ie., that {(a’, 0"} -
(a”, 6(v,)>-q' €p[{ay, ' >] | t. Then the second step (¢’, c”) must stem
from either of p[{p,, ¢’ »] or ; Let us show that it can stem from neither
of them. Suppose that the second step stems from ¢, ie., {¢",6(v{)) q'€
p[<oo,0'>] | t[{o’, 6")] Then t[{a’,0">]1#, and therefore, under
the assumption that oo(x)##0c'(x), the assignment “x:=v,” must be
executed in the second step, which yields ¢"(x)=rv,. However, this con-
tradicts (x)(i). Thus <o”,(v,)) -¢' €p[{T¢. 0" " {c',6"»] || t. The thl?d
step <¢", G(v,)) cannot step from p[<oy, o')-{a’,a"y], since, by (16)(1),
p[<oo,0')-<a',a"y <", &(v,)>]=. Thus the third step must stem
from ¢, which implies v, =¢’(x) or v, =v,. However, both are impossible
by (16)(ii) and (x)(ii), respectively. Summing up, the first step cannot stem

643/115/1-12

152 HORITA, DE BAKKER, AND RUTTEN

from p, and therqfore, it must stem from z Thus one has {(¢’,0¢")-
Ca",6(vy)>-q"ep |l 1[{og,0'>].

Next let us show the second step <o’,¢”)> cannot stem from
t[{oq, ¢’ >]. If it stems from ([{cq, ¢’)], then t[(o, o') -{o', 06")1 # I,
which implies, by the form of T, that ¢”(x)=v,. This contradicts (16)(iii).
Thus the second step must stem from p, and therefore, {a", &(vy))-
q'epl<a’,a">1| t[{og,0">].

Finally, the third step <c¢”, 6(v;)) cannot stem from p[<¢’,0">],
since p[<a’,d") -<a",d(v,))]= &, by (16)(iv). Thus the third step must
stem from ¢[<{o,,0'>], and therefore, ¢'ep[{a’,c">]| [{00,0)"
{a",6(vy)>], thatis, ¢'ep[<a’, a1 2, [T']. 1

Remark 4. Note that if o4(x)# ¢'(x) and ¢'(x) # ¢”(x), then a simpler
tester T=(x:=0'(x)); (x:=v,); T', with v, satisfying (16), is sufficient to
establish the above lemma. However, if ¢4(x)#0'(x) and o’'(x)=0"(x),
then we need a tester defined in the format (17) to exclude the possibility
that the first three steps of the parallel composition may stem from p, ¢,
and 1, respectively.

3.6. Comparison of &, and Other Models

3.6.1. Comparison with a More Abstract Model than 9, for &, with V Finite

As stated earlier, the assumption that V is infinite is necessary for the full
abstraction of %,. In fact, if V is finite, then we can construct another
compositional model &, which is correct w.r.t. ¢, and more abstract than
9,. Thus 9, cannot be fully abstract w.r.t. ¢,. The model &, is constructed
from 2, by abstracting from certain redundant information present in %,
as follows:

DerINITION 15. Let pe 9(Q,). (1) Let gep, and {(n,iyewx2. Let
us say ¢q is pruned away from p at place {(n, i) iff g is infinite and
g¢qt - (E(ni(g(n)) n(Zx X)*) =p.

(2) A pruning function A:p(Q,)— p(Q;) is defined as follows:
A(p)={qep:3(niYewx2[q is pruned away from p at place
{n,iy]}.

(3) For se %, let 9,[s] = A(2,[s]).

Since executable passes in 9,[s] are the same asAthose in 2,[s] (se &)
by the definition of A4, one has the correctness of ¥, w.r.t. O;:

LEMMA 14. o, o9, =a,0D,=0),.

Moreover, we can show that &, is compositional w.r.t. all the operators
of #,. For this purpose, we define another set of semantic operations from

FULLY ABSTRACT MODELS FOR CONCURRENCY 153

that defined in Definition 8. For each syntactical operator F with arity r
of &, a semantic operation F with domain (P,) has been defined in
Definition 8; we can extend the domain of F from (P,) to (9(Q,))
straightforwardly except for F=|. As to ||, we can extend the domain of |
to (¢(Q;))? by means of a merge operation on elements of Q,; this opera-
tion can be defined as in [Hor91], where merge operation on infinite

sequences (taking communication into account) is defined.

DeriNITION 16, (1) Let rew. For a meaning function & with
dom(2)= 4, and 5e (A", let 2[5] = (2[s(i)]);.,. Also, for a function f
with dom(f) = p(Q,), and pe (p(Q,)) let f(F) = (f(5()));e,-

(2) Let & be the set of syntactical operators of %, and for re w, let
SF(r)={Fe Y, : the arity of Fis r}. Let Fe %(r) and F be the semantic
operation corresponding to F in the interpretation structure .%,. From F,
let us define another semantic operation F as follows: For every

Pe (9(Qy)), let F()=A(F(p)).

From the semantic operations £, one obtains the compositionality of D,
w.r.t. all the operators of #:

3]'_;EMMA 15. For every re w and Fe ¥,(r), one has¥5e (&) [,[F(5)] =
F(2,[51)].

Proof. Let rew and Fe%(r). It can be shown that (*): Vje
(9(Q,)) [A(F(p))=A(F(A(p)))]. From this one obtains the desired
result as follows: Let §e (%), and p=2,[5]. Then

G [F(5)] = AD[F3)]) (by the definition of D)
F

= A(F(p)) (by the compositionality of Z,)
= A(F(A(P))) (by (*))
= F(2,[5]) (by the definition of D,and F). |}

When V is finite, the model &, is strictly more abstract than &, as can
seen from the following example. Thus &, is not fully abstract in this case.

ExaMPLE 3. Assume that V= {0, 1}. Moreover, let us assume, for sim-
plicity, that IVar = {x}. Then X is identified with V. Let g = ((x := 0); X,) +
((x:=1); X,), and suppose (X, g»eD. Then, setting s; =X+ 1f(x=0,
(x :=0); f(x=0, X, 0), X,), and 5, =If(x =0, ((x :=0); If(x=0, Xy, 0)) +
((x :=1); X,), X,), one has 2,[s,][<0, 0> - <1, 1] # &, but #,[5,] [0, 05 -
{(1,1>]= . Thus, (x) Z,[s,] # % [s.]. However, by the definition of &, an'd
A, one has (1) Z,[s,] = A(2[s1]) = 4(2, [s:1) =2 [s:] = {qe Z[s.] :qis

154 HORITA, DE BAKKER, AND RUTTEN

finite v ¢ is infinite and executable}, since if ¢ (¢Q,) is infinite and
executable, then ge 2,[s] (i=1,2). Thus, for every context S LT,
one has O[S [s:]] =0‘1(921[‘9(&)[51]]])=°‘1(91[[S(§)[52]]])= O[S [s21].
From this and (), it follows that &, is not fully abstract w.r.t. 0.

Note that, when V is infinite, we cannot construct a statement yielding
all infinite paths, such as X, in the above lemma; thus () in the above
example does not hold when V is infinite. Moreover, for every se &, it is
shown that

9,[s) = A2, [s]) = D51, (18)

as follows: First, for every ge 2,[s], {n, iy € wx2, it does not hold that
gt (E(nX(q(n)) n(Ex Z)*)cp, since Z[s] is image finite by
Lemma 6(4). Hence, ge 2,[s] is not pruned away from &,[s] at place
{n;iy. Thus, one has (18).

3.6.2. Comparison with a Less Abstract Model than 2, for %,

In [BRI1], another denotational model 2 for a language, which is like
%, but has general sequential composition instead of prefixing, was
proposed. The model 21 was presented on the basis of the domain: P} =
#0c(Q1), where Qi = {¢} U (2 — (2 — Q})). The outline of &/ is as follows
(the interpretation of the parallel composition is omitted, since this is not
necessary for the present purpose):

(D) Zilx:=e)s]={(do: {o[[el(o)/x], g>): g€ 2![s]}.

(i) The operation +':P{xP,—P; is defined by {e¢}+p=
p+{e}=p and, for p,, p,# {e}, p,+p, is the set-theoretic union of p,
and p,.

(iii) Z1[If(b, 5y, 5,1)] = {(do :if([b](0) = tt, q,(0), q2(0))); g1 €
Z\[s:] A qe2i[s)]}-

It turns out that 2] is not fully abstract w.rt. &, as the next example
shows. Thus, 2 is less abstract than 2,.

ExaMPLE 4. Let us assume, for simplicity, that IVar = {x}. Then, X is
identified with V. Let g, = ((x :=0);0) + ((x := 1); 0), and

s;=f(x=0, (x:=0);0, (x :=1);0) + If(x =0, (x :=1); 0, (x :=0); 0).

Then () 2,[s,]=2,[s:;]={({v,v")):veVA(@®=0vv'=1)}.0,. On
the other hand, 2![s]={q,,q,}, where g,=(AveV:(0,¢)), ¢,=
(AveV: (1,¢g)). Also, P'\[s,] = {4}, ¢>}, where ¢\ =(lveV: if(v=0,
(0,6, {1,¢))), gh= (e V :if(1=0, {1, &), <0, &))). Hence (1) Z'[s,] #
21[s,]. If 27 is also fully abstract, then one has Vs, $,€ LLD[s,] =

FULLY ABSTRACT MODELS FOR CONCURRENCY 155

D [s:] = D1[s,]=2[s,]], which contradicts (%) and (t). Hence 2
cannot be fully abstract.

3.6.3. Comparison with Hennessy and Plotkin’s Resumptions Model

The language treated in [HP797], which we denote by #,, is very
similar to %, except that it contains “co”, a coroutine construct, as well as
the usual interleaving. On the basis of a set (a€) Act of primitive actions,
(se) %, is given by s:u=al(s,,s,) If(s, S1, S,) |While(d, s)| (s, + s5)
[(s1 | s2)] (s;cos,). A transition relation — c &, xStr with Str=2'u
(Zox2) is defined, as —,, with the help of a given interpretation
o 1 Act - (2>) (see Section 2 of [HP79]). The expression <s, o) — ¢’
means that the configuration (s, ¢) terminates with state ¢’. The opera-
tional semantics # treated in [HP79] is defined as follows: For every
statement s and state o, Z[s](d)={0": (s,06)> >* ¢’} UIf(3({$ms T))necw
[<SO760> = <S,O’>/\V}’ZEU)[<S",G”> - <Sn+l’ar1+1>]]’ {l}’@)
Obviously # is more abstract than another operational semantics
Oso: Lo = (£ = 0, (Z5°\{e})) which is constructed by slightly modifying
O, in the obvious way. Then, a denotational model ¥~ for %, is defined on
the bases of a domain R which is the solution of a domain equation in the
category of non-deterministic domains. Furthermore, the full abstraction of
¥ wrt. £ is established under the following three assumptions (see the
paragraph immediately preceding Lemma 5.6 of [HP791]):

(1) The set X of states is infinite. (ii) For each o€ X, there
exists a statement K(c)eAct such that Vo'[/[K(c)]
(6")=0]. (ili) For each geZ, there exists an expression
is(o) € BExp such that Vo'[[is(o)](¢')=tt<=0"=0¢]. (19)

We can construct a denotational model Z,, for %, by slighly modifying
9, . First, the underlying domain P, is defined by slightly modifying P, as
follows: P, = £,.(Q.), where Q., is the solution of domain equation:
Q.. =(Xx {<\/, gy:0e2})w (Fx2)xid,(Q.) with \/ being some
symbol standing for termination. Writing \/ (o) for <\/ , 0y for the sake
of readability, one has Q.= (ZxZ)<“-{({a,/(6"))):0,0'eZ} w
(Zx2X2)®, as with Q,. Then, the model Z,,— (£ —P,) is defined by
Do[s1(0) =2 [s](c) v 25 [s](c), where 2 [s](c) and Z¢,[s](c) are the
terminating and nonterminating parts of Z,,[s](c); these parts are defined
as follows: First, 2% [s](0) = {({0;, 6/))ien ({Ons \/(o;)>) IHEWA 0=
0 A3(SDicmsn) [So=sAVien[{s, 0,0 = (i1, i1 A LSy 0,y = S}
NCXt’ 920[3]](0') = {(<O'i: O-x/‘>)iecu L0p=0A 3(Si)isw [SOE SA ViE(L)[<S,-, O',->
= {8;+1,0,>1]}. The model Z,, can also be formulated by means of
appropriate semantic operations and Banach’s Theorem, as &,.

156 HORITA, DE BAKKER, AND RUTTEN

Interestingly, the full abstraction of Z,, can also be established under the
assumptions (19). Thus, the two models ¥” and %, are isomorphic in the
sense of Lemma 11, while the two models are constructed rather differently.
The proof of its full abstraction is outlined below.

Proof of Full Abstraction of Z,. Let sy, 5,€ £, such that D8] #
@co[‘sz:ﬂ' Then’ either @Zoﬂ:sljﬂ #@20[52:[" or 920[[51]] #920[52:[]- Let us set
pi= gcolbi]] (i=1, 2).

Case 1. Suppose 22 [s,] # 2, [s,]. Then, we can assume, without loss
of generality, that there exists g such that g€ 22 [5,]1\2% [s,]- Thus, by
the closedness of p,, there exists ({0;,0';>)ic(m+1) such that (x)
(012 61 ieqmey €PN\ pI7* 1 for some me w. As in [HP79], we can
construct an appropriate tester T, for distinguishing s, and s, as follows:
First, let T, =If(is(a,,), K(), K(¢')), where &, ¢' will be chosen below.
Then T, (iem,) are defined by T,=1f(is(c/), (K(0;41); Tis 1), K(5')). We
choose ¢ and &' so that (1) 6¢ Ukems1, ({0 :({0,, 07>)ici - (Lohs0)) €
pl¥+11}), (1) ¢ # 6. Note that the right-hand side of (f) is finite since the
transition relation — is finitely branching, and thus, by the assumption
(19)(i), we can choose such states. Then, obviously one has (<o, 05),
G4 G1 D5 e KOs O s O pprrs \/(&)>)6900Ks1 co T,], and therefore , (xx)
&€ AB[s, co Ty](a,). On the other hand, by the conditions () and (), one
can show that Ge@B[s,co Tol(0o)=({0; 0} Y)icmsn€ps™ T 1. Thus,
since ({0, 0-1{>)ie(m+l)¢p|7;m+1]’ one has (11) ¢ ¢ #[s,co Tol(oo)- By (xx)
and (1), one has #[s, co T,] # #[s, co T,].

Case 2. Suppose 2. [s,] # 2.,[s,]. Then, we can assume, without loss
of generality, that there exists ({0;, G;>)iem ({Tpm, \/ () >)EDP\ P>

(mew). Let us choose & so that (ff) d¢{o/:ie(m+1)}u
{0:(£05,60))ieimsn) - (O, 0))Ep™+21}, and let T=(K(G)); T’ with T’
being an arbitrary statement. Then obviously one has (<o, 6;>)icim+1)"
(o,)€ (py; T)I™ 21 On the other hand, by the condition (}}) it is
impossible that (<6, 6/>)icoms1) ({Oms GY)€(py; T)'" 2. Hence, one
has ({a;, 0 0)ictmen) (KO @Y)e(py; T)[m+2]\(P2; T)[m+2]- Thus, one
obtains the same proposition as () in Case 1, replacing ({c;, 6})ic(m+1)
by ({61, 6{>)icims1y- (o, @), and p, by (p;; T) for i=1, 2. Hence, one
cCan clons;ruct T, such that B[(s;; T)co Ty] # ABl(s,; T)co T,], as in
ase 1.

The full abstraction result for 7 and 9,, essentially depends on the “co”
construct; without this, the two models would not be fully abstract w.r.t. 4,

;vhich6 33 also conjectured by Hennessy and Plotkin for ¥~ (see [HP79,
ect. 6]).

FULLY ABSTRACT MODELS FOR CONCURRENCY 157
4. A NONUNIFORM LANGUAGE WITH COMMUNICATION

The second language %, is a nonuniform language which has CSP-like
communications in addition to all constructs of the first language. An
operational model @, for %, is given as in Section 3.

The domain of a denotational model &, for % is a kind of failures
model, introduced in [BHR84], adapted to the nonuniform setting. Each
element of the domain is a set consisting of such elements as
(o5 a;,0:);, {a",I'>>, where a,, ¢}, and ¢” are states, a, is an action,
and I' is a set of communication sorts. These elements are called failures;
the parts ({o,,a;,0/)); and {c”,I') are called a trace and a refusal,
respectively.

First, the correctness of 9, is established as in Section 3. Then, the full
abstraction of &, is established by a combination of the testing method
introduced in Section 3 and the method proposed by Bergstra et al in
[BKOB88] to establish the full abstraction of a failures model for a uniform
language without recursion. This method was adapted by Rutten in
[Rut89] to employ it for a language with recursion in the framework of
complete metric spaces, which suggests how to use it in the present setting.

The full abstraction of the denotational model for % is established as
follows: Given two statements s; and s, of % which are distinct in their
denotational meanings, the denotational meanings are distinct in the trace
parts or in the refusal parts. When the distinction is in the trace parts, we
can construct a tester by the testing method; otherwise we can construct a
tester by the method of Bergstra et al.

4.1. The Language %,

In addition to all constructs of %, the language .%, has CSP-like com-
munications; i.e., it has inputs “(c? x)” and outputs “(c! e)” for all channels
¢, individual variables x, and value expressions e.

DerNiTION 17 (Language %). The set of statements of the nonuniform
concurrent language (S €) 5 is defined by the following BNF-syntax:

S=0]|(x:=e); S| (c!e); S(c?x); S| If(b, 1, S2) [S1+ S Sy | S21X1 &

Here X ranges over RVar, the set of recursion variables; ¢ ranges over
SVar, the set of place holders used for defining contexts as in Definition 4.
In addition, ¢ ranges over Chan, the set of communication channels. Let
(se) L= {SeLF :FV(S)=J};for{eSVar, let F5={Se&LF FV(S)<
{¢}}

158 HORITA, DE BAKKER, AND RUTTEN

Then the set of guarded statements (g €)%, is defined by the following
BNF-syntax:

gu=0|(x:=e);s| (cle);s|(c?x);s| If(b, g, 8:) 181+ &2l &1 Il &2

We assume that each recursion variable X is associated with an element g
of %, by a set of declarations D= {{X, x>} xervar-

In the sequel of this section, we fix a declaration set D=
{{X, gx>} xervar As for &, £¥ and %, can be formulated as the set of
terms and the set of closed terms generated by a signature %, respectively.

4.2. Operational Model O, for &,

An operational model @, for %, is defined in terms of a transition rela-
tion —,. The following definition is given as a preliminary to the definition
of —,.

DEerFINITION 18 (Actions). (1) The set of communication sorts, (y €) C,
is given by C= {c!:ceChan}u {¢?:ceChan}.
(2) The set of actions, (a€) A, is given by A=(CxV)u {t}.
(3) The set of action sorts, (4 €) ASort, is given by Asort=Cu {7}.
(4) A function sort: A — ASort is defined as follows: For ae€A,
sort(a) =y if a= {y,v) e CxV; otherwise sort(a)=1. J

The transition relation —, S (% x 2) x A x (%, x X) is defined as follows.
For s,,5,€ %, 0,,0,€2, and a€ A, we write {s,,0,> -5, {s,, 0, for
{{81,0,0,a,{s5,0,9>€—,.Forc!, ¢c?eC and veV, we sometimes write
c¢lvand c¢?v for {c!,v) and <{c?, v), respectively.

DEeFINITION 19 (Transition Relation —,). The transition relation —, is
defined as the smallest relation satisfying the following rules (1) to (9):

(1) ((x:=e)s, o), <s, ol [e](0)/x]D
2) ((cle)ys, oy S, (s o)

(3) {(e?x)50) 5, (s, 0[v/x]) (veV)

<Sla 0,>_U_}2 <S7 OJ>
(If(b, 51, 52), 05 —>2 (s, 0"

4) ([6](a) =tt)

FULLY ABSTRACT MODELS FOR CONCURRENCY 159

<S2a o‘> _i')l <S, o-l>

O B, 51,5000 =, <5, 07y ([PD@) =D

<S1’0.>_a>2 <S,O’l>
© i S (o 1Y

<S2+31»0'>"a"’2<~9,0'/>

<Sla0>'—”')2 <S5O-I>

7
N N S RN PSR

(8, ||31a0'>_a"2<52”&6,>
(8) <s1’a_>_f-_”)2 <S/1,0'>, <S2,O'>-c—f>2 <SI2aO'I> (ceChan,veV)

(sl 82,00 =, <5y 55,07
(sl s1,0) =283 1l 81,07
<gX’ O-> —a*z <S,’ O-l>
(X,0)—,(s,0")

©) ({X,gx>€eD)

For (s,0)e % x 2, let act(s,0)={aecA: (s, 0" YeLxZ[{s,0) 5,
{s',0'>]}. Moreover, let sact(s, 6) = sort[act(s, o)].

The transition relation is image finite in the sense of part (1) of the
following lemma:
LEMMA 16. For every se %, c€ X, the following hold:

(1) For every a€A, the set {{s',c'Ye % xX:{s,0)—5,{s,d'>}
is finite.

(2) asort(s, o) is finite.

(3) For every ceChan, the set {veV :<{c!,v)eact(s, o)} is finite.

Proof. These are shown in a fashion similar to the proof of
Lemma 3. §

In terms of the transition relation —,, the operational model @, is
defined as follows:

DerINITION 20 (Operational Model ¢, for %). (1) Let M§=
(&L= (2= p((Ax2)<?))), and let ¥J: M§ — MY be defined as follows:
For feM{, se %, and 6e 2,

PN o) = {Ka, 0> -f(s)a") : (5,00 =5, (s, 0>}
v If(z ¢ act(s, o), {&}, D).

It follows that ¥ is a contraction from M3 to M$, as in Definition 6.

160 HORITA, DE BAKKER, AND RUTTEN

(2) Let the operational model ¢, be the unique fixed point of ¥§. By
the definition, one has (),: %, — (X — @ ..((A x 2)=®)), and for each se %,
and 0 €2,

0,[s1(0)=J {Ka, ") - O,[s'](a") : (5, 0> >, (5", 0"}
v If(z ¢ act(s, o), {e}, &)

4.3. Denotational Model 2, for %,

The domain of a denotational semantic domain P, for %, is a kind of
failures model, which was introduced in BHR84], adapted to the non-
uniform setting. Each element of the domain is a set consisting of such
elements as {({7;, a;,06.);, {a", ")), where ¢;, g;, and ¢” are states, a;
is an action, and I' is a set of communication sorts. These elements are
called failures. Formally P, is defined by:

DEerFINITION 21 (Denotational Semantic Domain P, for %). (1) Let
Q, be the unique solution of Q,=(Zx p(C)) w ((ZxAx2)xid (Q,)).
One has Q, = (X xAxZ)<“. (Ix p(C)))u (X xAxZ)?

(2) For pe 9,.(Q,) and re (X x Ax 2)<?, the remainder of p with
prefix r, denoted by p[r], is defined by p[r]1={q'€eQ,:r-q'ep}.

(3) ForgeQ,u(ZxAxZX)™, letistate,(q)=0cif g=({0,a,06'>) ¢,
and let istate,(q)=¢" if IA[g=({c", I))].

(4) Forpe 9..(Q,) and o€ 2, let p{a) = {qep :istate,(q) =0 }.
(5) The process p€ 9,.(Q>) is uniformly nonempty at level iff

Vrie(ZxAxZ)' [plrl1# B =VoecZ[p[rie)># 1]

Moreover, p is uniformly nonempty iff p is uniformly nonempty at every
level ne w.

(6) Let P,, the domain of processes for .%,, be given by
P,={pe»(Q,): pis uniformly nonempty }.

(7) For yeC, let y=c? if y=c!; otherwise y=c¢? and j=c
Moreover, for I'e p(C), let I'={j:yel}.

We have the following lemma for P,, which is similar to Lemma 4
for P,.

Lemma 17. The set P, is closed in ..(Q,), and therefore, P, is a
complete metric space with the original metric of ¢ ,.(Q,).

FULLY ABSTRACT MODELS FOR CONCURRENCY 161

Proof. This is proved in a similar fashion to the proof of Lemma 4. [

The interpretation .% for the signature of % is defined as follows:

DerFINITION 22 (Interpretation .% for Signature of %). (1) 0,=
{({o,I')): <o, e Zxp(C)}.
(2) For xelVar and ee VExp, asg,(x,e):P,— P, is defined as
follows: For peP,,

asg(x, e)(p)= {(<o, 7, o[[e](0)/x]))-p 02}

(3) For ceChan and eeVExp, out(c,e):P,— P, is defined as
follows: For peP,,

out(c, e)(p)={(<o, Lc!, [el(c)), a))-p:oeX}
U{(o, I')):aeZ AT'SC\{c!}}.

(4) For ceChan and xelVar, inp(c, x): P,—P, is defined as
follows: For peP,,

inp(c, x)(p)={({o, c?v, 6[v/x]))-p:oeX AveV}
Ui{{e, I>):ceX AT'=C\{c?}}.
(5) For beBExp, if(h):P,xP,—>P, is defined as follows: For
P1,p2€Ps,

if(6)(py, p2) = [if([b](o) =tt, p, {0, p2{a))].

ceX

(6) For peP,, pn((ZxAxZ)xQ,) is called the action part of p
and denoted by p*.
For p,, p,€P,, p; + p, is defined as in Definition 8 by

P ¥ pa=py ups V{({o, I))eZxp(C):({a, I'))ep;np,}.
A process pe P, is said to be downward closed at level 0 if
Vo, VI'[({o, T))ep=VI"[I"cI'= (o, ["))ep]]

It follows immediately from the definition of + that if p, and p, are
downward closed, then

pi ¥ pa=piups U{(Ke, IM))eZx p(C):3(Ka, I'))ep,;
(Ko, Iy))ep el n 5]

162 HORITA, DE BAKKER, AND RUTTEN

(7) We have the unique operation ﬂ: P,xP,-P, satisfyipg the
following equation; the existence and uniqueness of such an operation are
obtained as in Definition 8(5). For p,, p,€Ps,

2T pa=(py Lp2)u(pa L) U Py B pa) V(P2 B PPy # pa),
where

p L= (<o a 0> (p[<o.a,a' 1T pa) i pil <o a0 Y]+ T}

P p:=(u (ot 03 - (<o el 0,031 T pal <o e, 071y

pi[<oncle. oY1 £ D Apal{oc?v, 0] #Q}) :

py# pr=1({a, I)):3({a, I D) epy,
3(<a, MyY)ep LI\ N (L) =G A TS0 L]}

Note that taking closure in the right-hand side of (20) is necessary, as
Example 5 shows below.

(8) 4 =1{0,, {asgy(x,) : {x,e)eIVar x VExp},
(if() : be BExp}, T, 1,
{out(c, e) : ceChan A ee VExp},

{inp(c, x) : ceChan A xeIVar}}.

ExamPLE 5. Let us assume, for simplicity, that IVar={x} and
V= {r}. Then the set of states consists only of one state denoted by wv.
Moreover assume that Chan= {¢;:iew} and ¢, #¢, for i# j. Let p, and
p. be defined by p,=1{q,:new}, p,={({v,¢c,?v,0),{v,F)):new}j,
where g, = <v, ¢, lv,0) v, cqlv,v) - v, ¢olv,) - v, &>. Then p; and
' W
p- belong to P,, and moreover they are image finite, which notion is to
be defined in Definition 24. Nevertheless, it is shown that the right-hand
side of (20) without taking closure is not closed as follows. This set

is {q, new}, where g, = v, 1,0) (v, colv,v) v, ol v,0) v, &

n
This is not closed, since the infinite sequence (<v,t,v), {v,cy! v, VD,
(v, eyl o, vy, ..) 1s a member of its closure but is not a member of it.

The next lemma follows immediately from Definition 22(7).

FULLY ABSTRACT MODELS FOR CONCURRENCY 163

LemMA 18. Vp,,prePylp [pa=p.1p, 1

In terms of the interpretation %, the denotational model 2, is defined
by induction on the structure of s€ %, as in Definition 9.

DEerFINITION 23 (Denotational Model &, for %). First, a contraction
II, from M¥ =(RVar—P,) to itself is defined as in Definition 9(1),
using % instead of 4. Let py=fix(IT,), and for XeRVar, let us define
X, the denotational meaning for X, by: X% =p(X). Next, for each
operator F of %, with arity r, and s, ..,5,€.%, let Z[F(s;, ... 52)] =
FA(D,[5,], ... D[[s,]), where F”* is the interpreted operation corre-
sponding to F.

Several properties including the so-called image finiteness for elements of
P, are introduced. It will be shown that the denotational meaning of each
statement in % has these properties; this fact is used for establishing the
full abstraction of %,.

DEerFINITION 24 (Image Finiteness for Elements of P,). Let pe P, and
new.

(1) The process p is image finite at level n, written IFin{"(p), iff
Vre(ZxAx)< [plrl#Q
=VoeX,VaecA[{d' eZ:p[rl[{o,a,¢')]1# I} is finite]].

The process p is image finite, written IFin,(p), iff Vae w[IFiny”(p)].

(2) The process p is finite w.r.t. action sorts at level n, written
ASFin")(p), iff

Vre(ZxAx2)<¢ [plr]# @ =VoeZ[sact(p[r], o)is finite]].

The process p is finite w.r.t. action sorts, written ASFin(p), 1ff Vne
w[ASFin"(p)].

(3) The process p is finite w.r.t. output values at level n, written
OVFin™)(p), iff

Vre(ZxAxX)<¢[p[rl# QT
=VoeZX,VeeChan[{veV:3c'[p[r][o, c!v, o’ >]#]} is finite]].

The process p is finite w.r.t. output values, written OVFin(p), iff
VYnew[OVFin"(p)].

164 HORITA, DE BAKKER, AND RUTTEN

(4) The process p satisfies the disjointness inaction condition at level
n, written DIC™")(p), iff

Ve (ExAxE)Y [p[r]1# T
=>VYoeZX, 3R < p(sact(p[r], o) n C)[VI e p(C)[(o, I'>)eplr]
<3IReZ['nR=F]]]].

The process p satisfies the disjointness inaction condition, wri.tten DI.(;(p), iff
Vne w[DIC™(p)]. (See Example 5, for a motivation of this definition.)

(5) Properties FIRN{(p), FIRTY(p), and FIR,(p) are defined as
FIRN{"(p), FIRT{"(p), and FIR,(p) in Definition 10(2). Formally, these
are defined as follows:

(i) First, FIRNY/(p) iff there exists Z'e @¢(IVar) such that
the following holds: Vre(ZxAxZ)", Vge((IVar\Z')— V)" [repl =
Vien[ni(r(i)) I (IVar\&) = m3(r(i)) I (IVar\#)] A ({(m5(r() [&) © (i),
(i), 13(r(i) 1 Z) U G(i)))icn€p™]. That is, for each re (2 x Ax2)",
if rept, then, in every step r(i)= (mi(r(i)), mi(r(i)), mi(r(i))) of r (i€n),
the value for xelIVar\Z is not changed, i.e., (*) ma(r(i)) [AVar\Z) =
73(r(i)) | (IVar\Z), and one may change the value n;’(r(i))(x) (j=0,2)
arbitrarily, ie, (1) (((m(r() M Z)wd(i), =(r(1)), (nd(r(i) [Z)u
G(i)));e,€pt™ for arbitrary Ge (IVar\Z') — V). Conversely, for arbitrary
Ge(IVar\?)— V)", if one has (x) and (T), then rept™l.

(ii) Similarly, FIRTY)(p)<3% € p((IVar), Vge(ZxAxZX)"-
(Zx @(C)), Vée(IVar\Z)-»V)'*! [qep<Vien[ny(q(i)) [(IVar\¥)=
m3(g(i) P (IVar\Z)] A ((x3(q(D) 1 Z) v G(i), mi(g(i)), (m3(q(i)) [X)u
G(i)))ien- ({(m3(g(n)) I X)W G(n), 2i(g(n))>) e pl.

(iii) FIR,(p)<>Vnew[FIRNY)(p) A FIRTY(p)].
(6) P¥ = {peP,:IFin,(p) A ASFin(p) A OVFin(p) A DIC(p) A
FIR,(p)}.

Remark 5. Though the condition DIC®)(-) might seem too com-
plicated, it is characterized in terms of a simpler condition D(-) defined as
follows: For peP,, () D(p)<=Vo[AI'[o, 'y ep]l=3R =sact(s,g)nC,
VIT o, I'Yep<=>TnR=]]. Let P’ be the smallest subset of P, which
includes {peP,:D(p)} and is closed under set-theoretical union; ie.,
let P'={UP":P"cP,AJP"e€P,AVp' eP'[D(p')]}. Then one has
P'={peP,:DIC(p)}. The part P'2 {peP,:DIC®)(p)} is shown as
follows (the other part is shown more straightforwardly). Let pe P, with
DIC(p), and 2'={¢:3I'[{o, '>ep]}. Then for each seZ’, there
exists #, such that VI'[(o, I') ep<>3Re R,[I'n R= F]]. Fix such %,
and for each Re[l,.s(%,), put p(R)={qep:lgt(q)=2 L {{a, Ty :
g€’ AT'nR(c)=&}. Then, one has D(p(R)) and p=U{p(R):
Rell,.-(4,)}, and therefore, peP".

FULLY ABSTRACT MODELS FOR CONCURRENCY 165

Also, as is obvious from Remark 1, the set {peP,:DIC(p)} is defined
as the largest subset of P, which is included in {peP,:DIC®(p)} and
closed under taking remainders, where closedness under taking remainders
for subsets of P, is defined as in Remark 1. It is easy to check that the
downward closedness of pe P, follows from that fact that DIC(p).

It turns out that the denotational meaning of each statement is a
member of P¥, which is used for establishing the full abstraction of .

LEMMA 19 (1) The set P¥ is closed in P,.
(2) YpeP¥ Vre(ZxAx2)<° [p[rl#J=plr]eP¥].
(3) The set P¥ is closed under all interpreted operations of %,.
(4) D[£A]<PF.
(5) VpeA[AH], Vre(Xx2)<“ [plrl1# J=plr]eP}].
Proof. These propositions are proved in a fashion similar to the proof
of Lemma 6. Here we prove the essential part of (3), ie., that Vp,, p,€

P,[DIC(p,) A DIC(p, || p»)]- Let us show by induction on ne€ w that the
following holds for every ne w:

Vp1, P2 € Po[DIC™(p,) A DIC™(p,)=DIC™(p,)] (21)

Induction Base. Let p,, p,eP, such that DIC®(p,) and DIC“(p,),
and fix ceX. By the definition of DIC(.), there exists %<
g (sact(p,, o) n C) such that

VIT<o, Sep;<>IReR[InR=F1] (i=1,2).

Let#Z={R, UR,: R, e® A RyeR, A R, "Ry =}. Then one has, by the
definitions ofﬂ and 4, that VI [(o, ') ep, ﬁpzaﬂReyZ[I’mR=®]],
which implies that DIC(p, || p,).

Induction Step. TFor every k € w, it is immediate by the definition of ﬁ,
that (21) with n=k + 1 follows from (21) with n=k. |

4.4. Correctness of @, with Respect to (,
The correctness of &, w.r.t. ¢, is established as that of 2, w.r.t. ¢, by

means of an intermediate model @,.

4.4.1. Intermediate Model for ¥, and Semantic Equivalence

First, the intermediate model @,, which is an alternative formulation of
9,, is defined in terms of the transition relation —,.

166 HORITA, DE BAKKER, AND RUTTEN

DerniTioN 25 (Intermediate Model 0, for %). We have the unique
mapping (,: % — P, satisfying the following condition (the existence and
uniqueness of such a mapping are obtained as in Definition 11): For s€ %,

OIsl=U {(Ko,a,0'))-B[sT:<0,a,0') e XX AXZ
A, oY=, {0, "> u{({a, ID): Ko, I'>eXxp(C)
A Téact(s, 0) A T nsact(s, 0)= I }.
We have the distributivity of T| in P, as we had that in P, (cf. Lemma 8).

Lemva 20 (Distributivity of | in P,). Let k,I>1, pi,.sPis
Dy PrEPY:

UtpdTUpl= U [p:lipfl.

iek jel iy jyekx]
Proof. Onmitted (see Appendix 5 of [HBR90]). 1
By means of the above lemma, we will establish the equivalence between
7, and (0, as we have established Lemma 7.

LemMma 21 (Semantic Equivalence for %). (1) Let F be an operator of
P with arity r, and let sy, ..., s,€ %,. Then one has

@[[F(Sls s 8,)] =FJ2(@2[[51]]» s @[[Sr]])-
(2) For se %, one has 0,[s] = 2,[s].

Proof. (1) The proof is similar to that of Lemma 7. Here we prove the
claim for the operator [. For the other operators this is proved (more
straightforwardly) in a similar fashion. Let H, =(% x % — P,), and let
F,GeH, be defined as follows: For s,, s,€%, F(sy, s5)=0,[s, || 5,1,
G(s,,5,)=0,[s,] || G>[s,]. Moreover, let F1:H,—H, be defined as
follows: For feH, and s,, s,€ %,

FUNs1,8:) =F 5 f) 51, Sz)Ug'—zlL(f)(Sza s)OF () s1s52)

UF ()2, 8) O F ()51, 82), where
FLU s, 8) =) {(o,a,0")) - f(s1,5,) : {51, 0) =55 {sh,0' >}, and
F (N1, 8)= {(Ka,1,6"D) - f(s1, 85) 1 3¢, [sy, 0> —2, (57, 0

A (83,0) —C'zi'*z {s's, 0">]},
F I, 8)={(Co, I')) :té¢act(s;, o) A Téact(s,, g) A sact(s,, o)
nsact(s,, o) = & A I'n (sact(s,, o) U sact(s,, 0)) = & }.

Then, #! is a contraction.

FULLY ABSTRACT MODELS FOR CONCURRENCY 167

Let 5, s,€%,. By the definition of @ and —,, one has F(s,, 5,)=
FNF)(sy, $5); ie., F=fix(#). Thus, for obtaining the desired result, it suf-
fices to show that G = #(G). By the definition of ||, one has

G(sy, 55)= U

Ljy=<1,2>,42,1>

Y (@2[[31]] # (51 [s.1)

[(@l[si]] IL @”:Sj]])u (@ﬂ:siﬂ = @[sjﬂ)]

Thus, for showing G = # §(G), it suffices to show that (%) (G157 1 52[[sj]])=
FHG) (s 5) (<1, 7 =<1,2), <2, 1)), (1) (B[s] & Bo[s]]) = F 5(G)(s1, 55)
(<6 Jp=<1,25,¢2,13), and (1)([s,] # O[s.])=F F(G)(s1,5,). The

fact () can be shown as (*) in the proof of Lemma 7(1); (1) is shown as
follows:

@Zﬂ:si] >@2[[Sj]]
= {(Co,1,0")) - (Gi[s][<o, ¢t v, 0311 Bls]1[o, c?v,0'>]):
O[5 1<, clv,65]1# D A Bo[s][<o, c?v, 6" > # S}

(taking closure is omitted, since ASFin®(®,[s,]) and
OV Fin®(6,[s,]) (k= 1, 2) by Lemma 16(2) and (3),

and therefore, the above set {J {((a, 7, o')--- } is closed)
~U{«a o) (VBT (550> =5, <siuo)
TU (BRI <5005 252, <5j, 0731)
351G 7y~ (5,031 A 305 79 25, G5 0701}
-U{«a s om (Va1 TaLs
(s 0> =Sy (st ad A (55 0y =2, (s, a')}) :
35/ [<5, 0> ==, (s, 0)]

A 3si[<s5,0) <, s}, a’)]} (by Lemma 20)
=F 7 (G)s,, Sj)’

643/115/1-13

168 HORITA, DE BAKKER, AND RUTTEN

For showing (), it suffices, by the definition of #, to show the following
for every (o, 'y e Zx p(C):

o, Iy e lfs,], 3o, Iy e O,[s,][(C\Iy)
NC\L)=B AI'sT' nT};]
< rédact(s;, 0) A T¢act(s,, 0) A sact(sy,) Nsact(sy, 0) =

A I' A (sact(s,, o) usact(s,, o)) = . (22)

The <-part of (22) is obtained by putting I, =C\sact(s,, o),
I, =C\sact(s,, o). Let us show the =-part. Suppose the left-hand side of
(22) holds, and fix such I';, I',. By the definition of @, (**) T ¢act(s,, o).
Moreover, I', nsact(s,,)=, and therefore, () sact(s;,) S C\ /7.
Similarly (1) ¢ act(s,, o), and sact(s,, 6) € C\I',, ie., (+*x) sact(s,, o) S
C\I,. By the left-hand side of (22), (f1), and (#x), one has (F1T)
sact(s,, o) Nsact(s,, 0) = C\I'; n C\I', = &. By the left-hand side of (22),
rcr,cC\sact(s,, ¢), and therefore, ({1f) I'nsact(s,, 0)= . Similarly
(wxxx) I'nsact(s,, o) = . By (x+), (£1), (TT1), (1), (##xx), one has the
right-hand side of (22). Thus one has (22).

(2) Similar to the proof of the part (2) of Lemma 7. J

4.4.2. Correctness of 9, with Respect to 0,

As a preliminary to the proof of the correctness, an abstraction functior

o Py = (2= o, ((Ax2)<?)) is defined as follows. Like «,, this functior
is formulated in two ways, first as the fixed point of a higher-order map
ping, and second as the set of histories.

DEFINITION 26 (Abstraction Function a, for %). We have the unique
mapping o, :P¥ - (X - p ((AxZ)=?)) satisfying the following (the
existence and uniqueness of such a mapping are obtained as in Definitior
12): For every peP¥, e X,

%(p)(e) = {({a, 0'>)-a(p[<0, a, 0" >])(0") :

E]‘]EQ2|:(<O.3 a, 0J>)qep]}
Vif(3re p(C)L(Ka, I'))ep], {e}, &).

The abstraction function is characterized in another way. First, we nee:
some preliminary definitions.

FULLY ABSTRACT MODELS FOR CONCURRENCY 169

DEFINITION 27 (Histories of Elements of Q). LetgeQ,u(ZxAxZX)<.
(1) The sequence g is executable, written Exec,(q), iff
ewu{w}, <oy, a,00))e, [9= (01 a;, 0/)),e,

AViev[i+lev=0/=0,,,]1]
V3kew, (<0, a;,07))ik, 30k, TY[g= ({0, a1, 671k
“(Kop, I'Y) AViek[oj=0,,,]1]

Let E,={geQ,U(ZxAxZ)“?:Exec,(q)}. For geZ, let E,{c)>=
{g€E,\{&} :istate,(g) =0}

(2) Let g be executable. The history of g, denoted by hist,(g), is
defined by

hist (q>={(<a"°;>)‘ev it g=(<0s @ 0>)icsn
’ (@i, 073)icx if ¢=(0:a:00)icr ({ox, D).

The next lemma is shown in a fashion similar to Lemma 9.

LEmMMA 22 (Another Formulation of the Abstraction Function o). (1)
For pePy, ceX, one has o,(p)(o) = {hist,(q) :gepnE,{a)}.

(2) Vk=1, Vpy, . pr€PF, Volor(Uscr [pI)0) = Usci [o2(p:)(0)1].

By means of this lemma, we have the correctness of 2.

LemMa 23 (Correctness of @,). (1) ayo 0= 0.
(2) 002, =0,.

Proof. (1) By showing that a,0 @, is the fixed point of ¥¢ defined in
Definition 20.

(2) Immediate from (1) and Lemma 21(2). §

4.5. Full Abstraction of 9, with Respect to 0,

As for &, we present the following lemma to establish the full abstrac-
tion of 2,;

LeMMA 24 (Uniform Distinction Lemma for %,). Let & € (g (IVar)\
{2

170 HORITA, DE BAKKER, AND RUTTEN
(1) For every re(Zax AXZg)=%,

Vo, D2€PE[p[r]1# B Aap[rl=¢
>VoeZy, ITe Blan(p, | ITT)0)N\t(ps | DIT])(0) # D11

(23)
(2) For every ge (ZaXx AxXZg)<?-(Zgx p(C)),
Vp., p,€PFlgep\ ps
=>VoeZy, ITe Hloa(p, | ZITTN0)\a(ps | 2,1TT)(0) # S11.
(24)

The proof of this lemma is given later. First, note that the full abstrac-
tion of 2, follows immediately from Lemma 24, in the same way as
Theorem 1 follows from Lemma 12.

TueoreM 2 (Full Abstraction of 2,). Let V be infinite. Then, for every
S, 5, €%, one has

D,[5,] # D:[5,] = 3T € L[ay(D,[s,] | D[T]) # 02(Da[5,] | Z.[TT)]-

We present the following lemma as a preliminary to the proof of Lemma
24. For its proof we assume that V is infinite.

LemMA 25 (Testing Lemma for %,). Let ¥ € (p;(IVar)\{}), pe P,
(o'ya,06")e(ZgxAXxLy), ao€Lq. Then there are two finite sequences
r, 1 €(Zg X AX X g)<? such that the following hold:

(1) ry-{o',a,06") -r,eE{0y).

(2) For every tester T'€ %, there exists another tester Te ¥, such
that the following hold.

() B[TIr -r]=2[T'],

(i) Vq'€Qulri-(o',a,0") -1y epl BITT=pl<c’, a,0")] #
D nqepl{a,a,d")]| ZITT]

Proof. The proof is formulated by supposing that & is reduced to one
variable: & = {x}, as Lemma 13. However, the lemma still holds when &
is composed of more than one variable, as Lemma 13. For veV, let &(v)
be defined as in Lemma 13. The proof is given by distinguishing two cases
according to whether a4(x)=0"(x).

FULLY ABSTRACT MODELS FOR CONCURRENCY 171

Ca.fe 1 When o4(x)=0"(x), we can easily construct two sequences 7,
r, satisfying (1), (2) of Lemma 25 as follows: r, = ¢ and r,=<{a", 1, 6(v,)),
where v, is chosen such that

(1) v, #a"(x), (i) v,¢{veV:{(d,a6")-{c" 1,6(v)>ep?}.
(25)

Note that the right-hand side of (25)(ii) is finite by Definition 24, and
therefore, there is v, satisfying (25). It is shown that (1) and (2) of Lemma

25 hold in a similar fashion to the corresponding part in the proof of
Lemma 13.

Case 2. When o4(x)#0¢’(x), we can construct two sequences ry, r,,
satisfying (1) and (2) of Lemma 25 as follows: r,=<0g,, 17,0, r,=
{c",1,6(v;)), where v, is chosen such that

(i) v,¢{veV:{ap,1,6"y-{a,a,¢")-{a",1,6(v))epll},
(i) v, #0'(x),
(iii) v, #0"(x),
(iv) v, ¢{veV:<{d,a,0")-{a",1,6(v))ep?}.

(26)

Note that the right-hand sides of (26)(i) and (iv) are finite by Definition
24, and therefore, there is v, satisfying (26). In this case also, it is
shown that (1) and (2) of Lemma 25 hold in a similar fashion to the
corresponding part in the proof of Lemma 13. §

The following proposition follows immediately from Lemma 25 as
Corollary 1 followed from Lemma 13; this corollary is to play a central
role in the proof of Lemma 24.

COROLLARY 2. Let X e(p(IVar\{@}), peP¥, (o',a,0")e(ZyX%
AxZXZ,), and o, X . Then, there are p,, p,€(AXXZy)= such that for
every T' € %, there exists Te€ %, such that, putting o, =last(p,-c" - p,), the
Sfollowing hold.

(1) For every p'e P¥, one has
Vp'e(Ax2)=*[p'[{c’,a,0">]1# T

A p eay(p'[{o’,a,6">]1 T BITT)(0))
=p1-0" py-p €cx(p' T DITT)(00)]. (27)

172 HORITA, DE BAKKER, AND RUTTEN

(2) For p' =p, one has the converse of (28). That is,

Yo' e (AxZ)<° [py-0" 02 p €as(p | Z:LT])(00)
=p[{c,a,0"Y1# D A p'eus(p[{o’a 0")11 BITT)(e1)] (28)
Proof of Lemma 24. Let Z e (p¢(IVar)\{J }).

Part (1). The first part is proved by means of Corollary 2, as Lemma
12(1) was proved by means of Corollary 1, by induction on the length of
re(Zyx AxZg)=®.

Part (2). We will prove that (24) holds for every ge (Z'y x Ax X)) = -
(Z4x 9(C)), by induction on the length of ¢. The proof is similar to the
proof of the corresponding part of Lemma 12 except for the induction base,
which is established by means of the method of [BKO88] with some adap-
tation to the present setting; the induction step can be established using the
testing method (Corollary 2).

Induction Base. Let lgt(qg)=1 and g=(<d’, I"')). Suppose gep, and
q¢p,, and let ce Zy. We will construct a tester T such that ({7,0'))€
oy(py | Z[T]) (o \aa(p2 1 2,[T1)(0). Since p, satisfies the disjointness
inaction condition, there exists %, such that (x) %, < gp(sact(p,, 0)nC)
and (f) VIe go(C)[((oJ,f>)6p2®3R€@2EFHR=Q]]. Fix such an
R,, and let () I'"=sact(p,, 0)nI". By () and the fact that g¢p,, one
has VR € &,[I n R'# 7. The set sact(p,, g) is finite since ASFin(p,),
which implies that I'” is finite. Let I'" = {y,, .., y,}. Since & is finite and
nonempty, we can put £ = {xy, .., x,} as in the proof of Lemma 12. Let us
set T=(x,:=0'(xy)); .; (x,:=0'(x,)); T, and T'=0+¢(H,)+ --- +
¢(7;) where ¢(y)=(c!v); 0 if y=c! with ve V arbitrary, and ¢(y) = (¢? x);

0 if y=c? with xeIVar arbitrary. With this tester 7, we will show that
({7,017, s <T oY) ea(p, | BITD)0\a(py | Z,[TT)(0). where o
al(o'(xy), oy ' (x))/ (X1, oy x;)] (P€7 + 1), N

First, let us show that ({71, d1),.., {1,0,.))€d5(p, || Z,[T])(c). Under
the assumption that gep,, one has (xx) ({d’, "' >)ep,. Moreover, by the
definition of T”, one has that (11) ({(¢’, C\I"">) € 2,[T']. Moreover,

(C\I)n (C\(C\TT) =(C\[")n I
=(C\I") nsact(py, o) n I (by (1)) = .

By this (*x), (1), and the definitions of I and #, one has that
(<0.:)’ T, J’] >’ e <O-:;-—l’ T, O-Ir>> <0J9 ®>)5P1 ” @2[[71]]’ i'e-v (II) (<T’ G/l>’
w T 00)e(py | 2.[TT)(0).

Next let us show, by contradiction, that ({z,0:>, .., {(1,0.))¢
as(ps H D[T])(g). Assume, to the contrary, that (sxx) ({1, 0}, ..,
(1,0,))€ayp, II D,[T])(o). Then, by the definition of «,, one has that

FULLY ABSTRACT MODELS FOR CONCURRENCY 173

(<€6’ Ty OJI >’ ide] <6;— e O':>, <O", Q>)EP2 T' 92[[” Hence, (<O", Q>)€
pZ ” @2[7':”[(<~06a T, all >> ey <O':_1, T, G;.))] =P ” @2[[7”]] By this and the
definitions of || and 4, there exist I';, I', € p(C) such that

(1) (Ko, I'))ep,,
(i) (o', I2))e [T, (29)
(iii) (C\I})n(C\I3) = @.
Moreover, there exists R'e %, such that I', " R'= . Fix such R’. Then
(t1T) C\I';2R’. By the fact that ({¢’, I'">)¢p,, one has that (I11)

I"'NR'#. By (29)(ii), one has that I',nT" =, ie, C\I', 27", and
therefore (s*#x) C\I, 2 I"". Thus

(C\I')nC\IL,2R' AT" (by (t11) and (++xx))
=R'n(sact(p,,0)nI") (by(}))
=R'NTI" (since R' Ssact(p,, o) by (*))# & (by (111))

This contradicts (29)(iii). Hence (**#) is false, and therefore, one has that
(7,010 s 7,0, 3) ¢ 23(p, || [T])(0). By this and (1), one has that
(%020 <7, 7)) € 03(py | DL TN (0 N\eta(p2 | Z2[TT)(0).

Induction Step. By means of Corollary 2, the induction step is
established, in a similar fashion to the induction step of the proof of
Lemma 12(1).

4.6. Comparison of %, and Roscoe’s Model for Occam

Roscoe, in [Ros84], constructed a denotational model for a large subset
of occam. The language in [Ros84] is similar to % in many respects.
However there are several differences between the two: One major dif-
ference is that, unlike individual variables in .%,, variables in occam (except
read-only ones) are not shared by two or more parallel processes, and
therefore, intermediate states of one process cannot directly affect another
process. Thus, in [Ros84], a denotational model & can be constructed (for
the language) without taking account of intermediate states: The model ¢
is constructed as a hybrid of the failures model for CSP (proposed in
[BHR84] and improved in [BR84]), and the conventional model for
sequential languages which defines the meaning of a program as a relation
between initial and final states. We expect that a model for %, can be con-
structed along the lines of %, and will be more abstract than %, in nature.
However, it will not be compositional w.r.t. ||, since processes of %, have
shared variables.

174 HORITA, DE BAKKER, AND RUTTEN
5. CONCLUDING REMARKS

We conclude this paper with some remarks about possible extensions of
the reported results and related works. There are two directions for such
extensions. One is to investigate fully abstract models for other languages,
e.g, a nonuniform concurrent language with process creation and (a form
of) local variables as the language % in [BR91]. The other is to investigate
fully abstract denotational models for the same language %, (or %) w.r.t.
other operational models, which might be more abstract than the one
treated in this paper.

For instance, it might be possible to construct a fully abstract denota-
tional model for an operational model #' for %, which is defined by
slightly modifying 4 in Sectin 3.6.3 as follows: For every statement s and
state 0, B'[s](c)={0":3[{s,0)(—=)* (s, 0") A 13", 0" Y[, 07>
=1 48", 0" 311} VifE({Sns 0D)new [{50, 00> = (5, 0> A Vnew[{s,, 0,
=1 {Snr1sOnr10]] {L}, &). It was shown in [AP86] that there is no
fully abstract denotational model w.r.t. 4’ if the language has countable
nondeterminism. However, it is still to be investigated whether there is a
fully abstract denotational model w.r.t. %', since the language %, does not
have counable nondeterminism. It seems that &, is not fully abstract w.r.t.
%' at least, we cannot establish the full abstraction w.rt. #' as we have
done w.r.t. O, since there are s,, s,€ % such that 2,[s,] # %,[s,], but
VTe % [AB'[s, | T1=2%'[s, | T]] This is easily verified by putting s, =0
and s, = (x :=x); 0.

For %,, a language for communicating concurrent systems, there are
several possible operational models besides ¢,, defined in Section 4. There
are several dimensions for classifying operational model for such a
language; such a classification and comparative study of these models were
presented in [Gla90]. One of those dimensions is the dichotomy of linear
time versus branching time: a model is called a linear time model, if it iden-
tifies processes differing only in the branching structure of their execution
paths; otherwise it is called a branching time model. Another dimension is
the dichotomy of weak versus strong: a model is called weak, if it identifies
processes differing only in their internal or silent actions (denoted by t in
this paper); otherwise it is called strong. Also, there are two kinds of
languages, i.e., uniform languages and nonuniform languages. By combina-
tion of these criteria, one has eight types of operational models, and for
each of them, one has the problem of constructing a fully abstract
denotational model, or of characterizing somehow the fully abstract
compositional model. The results on these problems obtained so far are
summarized in Table 1.

As described in the introduction, fully abstract model for uniform
languages w.r.t. strong operational models of the linear time variety were

FULLY ABSTRACT MODELS FOR CONCURRENCY 175

TABLE I
Results on Fully Abstract Models for Communicating Processes

Linear Time Strong Uniform [BKO88]: Characterization of a fully abstract
compositional model. *!
[Rut89]: Construction of a fully abstract
denotational model.*?

Nonuniform This paper: Construction of a fully abstract
denotational model w.r.t. an operational model
with states.*’

?: With respect to an operational model
without states.**

Weak Uniform [Hor91]: Characterization of fully abstract
models for a CCS-like language.*®

Nonuniform ?*¢

Branching Time Strong Uniform [Mil80, Mil85, Mil89]: Characterization of a
fully abstract compositional model for CCS.*?
[GV88]: Characterization of fully abstract
compositional models in general.*?
[Rut90]: Construction of fully abstract
denotational models.*®

Nonuniform ?

Weak Uniform [Mil80, Mil85, Mil89]: Characterization of a
fully abstract compositional model. - °
Nonuniform ?

investigated in [BKO88] and [Rut89] (cf.. *1, *2 in Table 1). The opera-
tional model (), for a nonuniform language introduced in Section 4 is a
strong model of the linear time variety. Also, it involves information about
states. A fully abstract denotational model w.r.t. this is presented in this
paper (cf. %3 in Table 1).

We can define a more abstract operational model ¢ ¥ for %, by ignoring
states as follows: For every statement s and state o, OF[s](c)=
U {(a)-0¥[s'T(a") : (s, 0 5, (5", a”" >} uif(t ¢ act(s, 0), {¢},). It is to
be investigated whether &, is fully abstract w.r.t. @F (cf =4 in Table 1). It
seems more difficult to construct fully abstract denotational models w.r.t.
weak operational models. A weak operational model ¢ F* for %, is defined
by means of ¢'F as follows: For every statement s and state g, O F*[s](c) =
{p\1:peO¥[s](a)}, where p\t is the result of ignoring 7’s in pe
(Cu {z})=* In [Hor91], fully abstract models for CCS-like languages
were constructed w.r.t. weak linear semantics with divergence, in the
uniform setting (cf. #5 in Table 1); it remains for future research to con-
struct such models in the nonuniform setting (cf. #*6 in Table 1). A related
discussion is found in the last section of [BKOS§8].

176 HORITA, DE BAKKER, AND RUTTEN

In [Mil80, Mil85, Mil897], Milner showed that a strong operational
model for CCS of the branching time variety is compositional (cf. %7 in
Table 1). Moreover, it was shown in [GV88] that branching time and
strong operational models are in general compositional under certain
conditions (cf. *8 in Table 1). Denotational models equivalent to those
operational models were presented in [Rut90]; the denotational models
are fully abstract w.r.t. the operational models by definition (cf. *9 in
Table 1).

In [Mil80], [Mil85], and [Mil89], Milner characterized a fully
abstract compositional model for CCS w.r.t. observation equivalence =
(cf. *10 in Table 1). This relation ~ is a weak operational equivalence
relation of the branching time variety. Milner characterized observation
congruence ~°, which is the coarsest congruence relation included in =,
as follows: For every two statements s, and s,, s,~°s, Iiff
Vae Act[A iy =ci 25 ¢ty [V8'[si =5 8" = 3s"[5;(—5)* =5 (-5)* 5" A
s'~s5"11]], where Act is the set of all actions including t (cf. [Mil89,
Definition 7.27]). While this model is not denotational in the sense
explained in the introduction, it seems worthwhile to investigate whether
such a characterization is possible in the linear time setting.

The full abstraction problem can be treated in another framework, i.e.,
in the setting of complete partial ordered sets or complete lattices. For a
treatment of the full abstraction problem for a concurrent language in this
setting see [HP79]. In [Hen88], which is based on [DHS83, Hen83, Hen
857, Henessy showed in detail the full abstraction of a denotational model
consisting of acceptance trees equipped with a complete partial order, w.r.t.
testing equivalence.

For a survey of the full abstraction problem for sequential languages, see
[BCLS8S]. In [St867], the general question concerning the existence of fully
abstract models was treated in an algebraic context.

ACKNOWLEDGMENTS
We thank the Amsterdam Concurrency Group, including Frank de Boer, Arie de Bruin,

Jean-Marie Jacquet, Peter Knijnenberg, Joost Kok, Erik de Vink, and Jeroen Warmerdam for
helpful discussions.

RECEIVED August 6, 1990; FINAL MANUSCRIPT RECEIVED July 15, 1992

REFERENCES

[AP86] ArT, K., AND PLOTKIN, G. (1986), Countable nondeterminism and random
assignment, J. Assoc. Comput. Mach. 33, 724-767.

FULLY ABSTRACT MODELS FOR CONCURRENCY 177

[ABKR89] AMEricA, P., DE BAKKER, J. W., KoK, J. N., AND RUTTEN, J. J. M. M. (1989),

[AR89]
[Bak91]
[BMS8]

[BR91]

[BZ82]

[BKOS8]

[BCL85]

[BHRS4]

[BR84]

[DH83]
[Dug66]
[Eng77]
[Gla90]

[GV88]

[Hen83]

[Hen85]
[Hen88]

[HP79]

[Hor%1]

Denotational semantics of a parallel object-oriented language, Inform. and
Comput. 83, 152-205.

AMERICA, P., AND RUTTEN, J. J. M. M. (1989), Solving reflexive domain in a
category of complete metric spaces, J. Comput. System Sci. 39, 343-375.

DE BAKKER, J. W. (1991), Comparative semantics for flow of control in logic
programming without logic, Inform. and Compur. 94, 123-179.

DE BAKKER, J. W., aAND MEYER, J.-J. CH. (1988), Metric semantics for
concurrency, BIT 28, 504-529.

DE BAKKER, J. W., AND RUTTEN, J. J. M. M. (1991), Concurrency semantics
based on metric domain equations, in “Topology and Category Theory in
Computer Science” (G. M. Reed, A. W. Roscoe, R. F. Wachter, Eds.),
pp. 113-151, Oxford Univ. Press, London.

DE BAKKER, J. W., AND ZUCKER, J. 1. (1982), Processes and the denotational
semantics of concurrency, Inform. and Control 54, 70-120.

BERGSTRA, J. A., KLOP, J. W., AND OLDEROG, E.-R. (1988), Readies and failures
in the algebra of communicating processes, SIAM J. Comput. 17, No. 6,
1134-1177.

BERRY, G., CURIEN, P. L., AND LEvy, J. (1985), Full abstraction for sequential
languages: The state of the art, in “Algebraic Methods in Semantics” (M. Nivat
and J. C. Reynolds, Eds.), pp. 90-132, Cambridge Univ. Press, London/
New York.

BrookEs, S. D., Hoarg, C. A. R., aND Roscog, A. W. (1984), A theory of
communicating sequential processes, J. 4Assoc. Comput. Mach. 31, 560-599.
BrROOKES, S. D., aND Roscok, A. W. (1984), An improved failures model for
communicating processes, in “Lecture Notes in Computer Science,” Vol. 197,
pp. 281-305, Springer-Verlag, Berlin/New York.

DE NicoLa, R., AND HENNESSY M. (1983), Testing equivalence and processes,
Theoret. Comput. Sci. 34, 83-133.

DucGunbpi, J. (1966), “Topology,” Allyn & Bacon, Boston.

ENGELKING, R. (1977), “General Topology,” Polish Scientific Publishers.

vaN GLABBEEK, R. J. (1990), “Comparative Concurrency Semantics and Refine-
ment of Actions,” Ph.D. Thesis, Free University of Amsterdam.

GROOTE, J. F., AND VAANDRAGER, F. (1988), “Structured Operational Semantics
and Bisimulation as a Congruence,” Technical Report CS-R8845, Centre for
Mathematics and Computer Science, Amsterdam, to appear in Inform. and
Comput.; extended abstract in “Proceedings 16th ICALP, Stresa,” pp. 423-438,
Lecture Notes in Computer Science, Vol. 372, Springer-Verlag, Berlin/
New York.

HENNESSY, M. (1983), Synchronous and asynchronous experiments on processes,
Inform. and Control 59, 36-83.

HENNESSY, M. (1985), Acceptance trees, J. Assoc. Comput. Mach. 32, 896-928.
HENNESSY, M. (1988), “Algebraic Theory of Processes,” MIT Press, Cambridge,
MA.

HENNESSY, M., AND PLOTKIN, G. D. (1979), Full abstraction for a simple parallel
programming language, in “Proceedings, 8th MFCS” (J. Betval, Ed.)
pp. 108-120, Lecture Notes in Computer Science, Vol. 74, Springer-Verlag,
Berlin/New York.

Horita, E. (1991), Fully abstract models for communicating processes with
respect to weak linear semantics with divergence, /EICE Trans. Inform. Systems
E75-D, No. 1, 64-77.

178

[HBRY0]

[KR90]

[Mil73]

[Mil77]
[Mil80]

[Mil85]

[Mil89]

[Mu85]

[Niv79]

[Plo81]

[Ros84]

[Rut89]

[Rut90]

[St86]

HORITA, DE BAKKER, AND RUTTEN

HoriTa, E., DE BAKKER, J. W., AND RUTTEN, J. J. M. M. (1990), “Fully Abstract
Denotational Models for Nonuniform Concurrent Languages,” CWI Report
CS-R9027, Amsterdam.

Kok, J. N., anp Rurten, J. J. M. M. (1990), Contraction in comparing
concurrency semantics, in Theoret. Comput. Sci. 76, 179-222.

MILNER, R. (1973), Processes: A mathematical model of computing agents, in
“Proceedings of Logic Colloquium 73” (H. E. Rose and J. C. Shepherdson, Eds.),
pp. 157-173, North-Holland, Amsterdam.

MILNER, R. (1977), Fully abstract models of typed lambda-calculi, Theoret.
Comput. Sci. 4, 1-22.

MILNER, R. (1980), “A Calculus of Communicating Systems,” Lecture Notes in
Computer Science, Vol. 92, Springer-Verlag, Berlin/New York.

MILNER, R. (1985), Lectures on a calculus for communicating systems, in “Semi-
nar on Concurrency” (S. D. Brookes, A. W. Roscoe, and G. Winskel, Eds.),
pp. 197-220, Lecture Notes in Computer Science, Vol. 197, Springer-Verlag,
Berlin/New York.

MILNER, R. (1989), “Communication and Concurrency,” Prentice-Hall Inter-
national, Englewood Cliffs, NJ.

MuLMULEY, K., (1985), “Full Abstraction and Semantic Equivalence,” Ph.D.
Thesis, Report CMU-CS-85-148, Computer Science Department, Carnegie
Mellon University, Pittsburgh.

NivaT, M. (1979), Infinite words, infinite trees, infinite computations, in “Foun-
dations of Computer Science III, Part 2” (J. W. de Bakker and J. van Leeuwen,
Eds.), Mathematical Centre Transactions, Vol. 109, Centre for Mathematics and
Computer Science.

ProtkiN, G. D. (1981), “A structured Approach to Operational Semantics,”
Report DAIMI FN-19, Computer Science Department, Aarhus University.
Roscoe, A. W, (1984), Denotational semantics for Occam, in “Seminar on
Concurrency” (S. D. Brookes, A. W. Roscoe, and G. Winskel, Eds.), pp. 306-329,
Lecture Notes in Computer Science, Vol. 197, Springer-Verlag, Berlin/New York.
RUTTEN, J. J. M. M. (1989), Correctness and full abstraction of metric semantics
for concurrency, in “Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency” (J. W. de Bakker, W. P. de Roever, G. Rozenberg,
Eds.), pp. 628-658, Lecture Notes in Computer Science, Vol. 354, Springer-
Verlag, Berlin/New York.

RUTTEN J. J. M. M. (1990), Deriving denotational models for bisimulation from
structured operational semantics, in “Programming Concepts and Methods,
Proceedings of the IFIP Working Group 2.2/2.3 Working Conference” (M. Broy
and C. B. Jones, Eds.), pp. 148-170, North-Holland, Amsterdam.

STOUGHTON, A. (1986), Fully Abstract Models of Programming Languages,”

Ph.D. Thesis, Report CST-40-86, Department of Computer Science, University of
Edinburgh.

Printed in Belgium

Uitgever: Academic Press, Inc.
Verantwoordelijke uitgever voor Belgié:
Hubert Van Muaele

Altenastraat 20, B-8310 Sint-Kruis

